Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_3_a8, author = {E. A. Mazepa and D. K. Ryaboshlykova}, title = {Boundary-value problems for the inhomogeneous {Schr\"odinger} equation with variations of its potential on non-compact {Riemannian} manifolds}, journal = {Problemy analiza}, pages = {113--128}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/} }
TY - JOUR AU - E. A. Mazepa AU - D. K. Ryaboshlykova TI - Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds JO - Problemy analiza PY - 2021 SP - 113 EP - 128 VL - 10 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/ LA - en ID - PA_2021_10_3_a8 ER -
%0 Journal Article %A E. A. Mazepa %A D. K. Ryaboshlykova %T Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds %J Problemy analiza %D 2021 %P 113-128 %V 10 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/ %G en %F PA_2021_10_3_a8
E. A. Mazepa; D. K. Ryaboshlykova. Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds. Problemy analiza, Tome 10 (2021) no. 3, pp. 113-128. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/
[1] Anderson M. T., “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Differential Geom., 18:4 (1983), 701–721 | DOI | MR
[2] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl
[3] Grigor'yan A., “Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[4] Grigor'yan A. A., Losev A. G., “Dimension of spaces of solutions of the Schrödinger equation on noncompact Riemannian manifolds”, Mathematical physics and computer simulation, 20:3 (2017), 34–42 (in Russian) | DOI | MR
[5] Grigor'yan A. A., Nadirashvili N. S., “Liouville theorems and external boundary value problems”, Russian Math. (Iz. VUZ), 1987, no. 5, 25–33 | MR
[6] Kesel'man V. M., “The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the Generalized capacity”, Mathematical physics and computer simulation, 22:2 (2019), 21–32 (in Russian) | DOI | MR
[7] Korolkov S. A., “Harmonic functions on Riemannian manifolds with ends”, Sib. Math. J., 49:6 (2008), 1319–1332 | DOI | MR | Zbl
[8] Korol'kov S. A., “On the solvability of boundary value problems for the stationary Schrödinger equation in unbounded domains on Riemannian manifolds”, Differ. Equ., 51:6 (2015), 738–744 | DOI | MR | Zbl
[9] Losev A. G., “On the solvability of the Dirichlet problem for the Poisson equation on certain noncompact Riemannian manifolds”, Differ. Equ., 53:12 (2017), 1643–1652 | DOI | MR | Zbl
[10] Losev A. G., Mazepa E. A., “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2002), 57–73 | MR | Zbl
[11] Losev A. G., Mazepa E. A., Chebanenko V. Y., “On unbounded solutions of the stationary Schrödinger equation on model Riemannian manifolds”, Russian Math. (Iz. VUZ), 2006, no. 7, 46–64 | DOI | MR
[12] Losev A. G., Mazepa E. A., “On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds”, Probl. Anal. Issues Anal., 7:25, Special Issue (2018), 101–112 | DOI | MR | Zbl
[13] Mastrolia P., Monticelli D. D., Punzo F., “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, Adv. Differential Equations, 23:1/2 (2018), 89–108 | MR | Zbl
[14] Mazepa E. A., “Boundary value problems for stationary Schrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599 | DOI | MR | Zbl
[15] Mazepa E. A., “An approximate approach to the construction of solutions to boundary value problems on non-compact Riemannian manifolds”, Vestn. Volgogr. Univ. Mat. Fiz., 30:5 (2015), 25–35 (in Russian) | DOI | MR
[16] Munteanu O., Sesum N., “The Poisson equation on complete manifolds with positive spectrum and applications”, Adv. in Math., 223 (2010), 198–219 | DOI | MR | Zbl
[17] Murata M., “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Proc. Intern. Conf. (Nagoya/Japan, 1990), 1992, 251–259 | DOI | MR | Zbl
[18] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manifold”, J. Differential Geom., 18:4 (1983), 723–732 | DOI | MR | Zbl