Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds
Problemy analiza, Tome 10 (2021) no. 3, pp. 113-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study solutions of the inhomogeneous Schrödinger equation $\Delta u-c(x)u=g(x)$, where $c(x)$, $g(x)$ are Hölder functions, with variations of its potential $ c(x)\geq 0 $ on a noncompact Riemannian manifold $M$. Our technique essentially relies on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with introduction of equivalency classes of functions. It made it possible to formulate boundary-value problems on $M$ independently from a natural geometric compactification. In the present work, we obtain conditions under which the solvability of boundary-value problems of the inhomogeneous Schrödinger equation is preserved for some variations of the coefficient $c(x) \geq 0$ on $M$.
Keywords: inhomogeneous Schrödinger equation, boundary-value problems, Riemannian manifold.
Mots-clés : variations of coefficients
@article{PA_2021_10_3_a8,
     author = {E. A. Mazepa and D. K. Ryaboshlykova},
     title = {Boundary-value problems for the inhomogeneous {Schr\"odinger} equation with variations of its potential on non-compact {Riemannian} manifolds},
     journal = {Problemy analiza},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/}
}
TY  - JOUR
AU  - E. A. Mazepa
AU  - D. K. Ryaboshlykova
TI  - Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds
JO  - Problemy analiza
PY  - 2021
SP  - 113
EP  - 128
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/
LA  - en
ID  - PA_2021_10_3_a8
ER  - 
%0 Journal Article
%A E. A. Mazepa
%A D. K. Ryaboshlykova
%T Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds
%J Problemy analiza
%D 2021
%P 113-128
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/
%G en
%F PA_2021_10_3_a8
E. A. Mazepa; D. K. Ryaboshlykova. Boundary-value problems for the inhomogeneous Schr\"odinger equation with variations of its potential on non-compact Riemannian manifolds. Problemy analiza, Tome 10 (2021) no. 3, pp. 113-128. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a8/

[1] Anderson M. T., “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Differential Geom., 18:4 (1983), 701–721 | DOI | MR

[2] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1983 | MR | Zbl

[3] Grigor'yan A., “Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl

[4] Grigor'yan A. A., Losev A. G., “Dimension of spaces of solutions of the Schrödinger equation on noncompact Riemannian manifolds”, Mathematical physics and computer simulation, 20:3 (2017), 34–42 (in Russian) | DOI | MR

[5] Grigor'yan A. A., Nadirashvili N. S., “Liouville theorems and external boundary value problems”, Russian Math. (Iz. VUZ), 1987, no. 5, 25–33 | MR

[6] Kesel'man V. M., “The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the Generalized capacity”, Mathematical physics and computer simulation, 22:2 (2019), 21–32 (in Russian) | DOI | MR

[7] Korolkov S. A., “Harmonic functions on Riemannian manifolds with ends”, Sib. Math. J., 49:6 (2008), 1319–1332 | DOI | MR | Zbl

[8] Korol'kov S. A., “On the solvability of boundary value problems for the stationary Schrödinger equation in unbounded domains on Riemannian manifolds”, Differ. Equ., 51:6 (2015), 738–744 | DOI | MR | Zbl

[9] Losev A. G., “On the solvability of the Dirichlet problem for the Poisson equation on certain noncompact Riemannian manifolds”, Differ. Equ., 53:12 (2017), 1643–1652 | DOI | MR | Zbl

[10] Losev A. G., Mazepa E. A., “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2002), 57–73 | MR | Zbl

[11] Losev A. G., Mazepa E. A., Chebanenko V. Y., “On unbounded solutions of the stationary Schrödinger equation on model Riemannian manifolds”, Russian Math. (Iz. VUZ), 2006, no. 7, 46–64 | DOI | MR

[12] Losev A. G., Mazepa E. A., “On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds”, Probl. Anal. Issues Anal., 7:25, Special Issue (2018), 101–112 | DOI | MR | Zbl

[13] Mastrolia P., Monticelli D. D., Punzo F., “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, Adv. Differential Equations, 23:1/2 (2018), 89–108 | MR | Zbl

[14] Mazepa E. A., “Boundary value problems for stationary Schrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599 | DOI | MR | Zbl

[15] Mazepa E. A., “An approximate approach to the construction of solutions to boundary value problems on non-compact Riemannian manifolds”, Vestn. Volgogr. Univ. Mat. Fiz., 30:5 (2015), 25–35 (in Russian) | DOI | MR

[16] Munteanu O., Sesum N., “The Poisson equation on complete manifolds with positive spectrum and applications”, Adv. in Math., 223 (2010), 198–219 | DOI | MR | Zbl

[17] Murata M., “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Proc. Intern. Conf. (Nagoya/Japan, 1990), 1992, 251–259 | DOI | MR | Zbl

[18] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manifold”, J. Differential Geom., 18:4 (1983), 723–732 | DOI | MR | Zbl