Smirnov's inequality for polynomials having zeros outside the unit disc
Problemy analiza, Tome 10 (2021) no. 3, pp. 71-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1887, the famous chemist D. I. Mendeleev posed the following problem: to estimate $|f'(x)|$ for a real polynomial $f(x)$, satisfying the condition $|f(x)|\leq M$ on $[a, b]$. This question arose when Mendeleev was studying aqueous solutions. The problem was solved by the famous mathematician A. A. Markov, and over the following 100 years was repeatedly modified and extended. For complex polynomials, important inequalities were obtained by S. N. Bernstein and V. I. Smirnov. Many other well-known mathematicians, such as Ch. Pommerenke, G. Szegö, Q. I. Rahman, G. Schmeisser, worked in this subject. Almost all results in this direction significantly use the following condition: all zeros of a majorizing polynomial belong to the closed unit disc. In this paper, we remove this condition. Here a majorizing polynomial may have zeros outside the unit disc. This allows to extend the inequalities of Bernstein and Smirnov.
Keywords: the Smirnov inequality, the Bernstein inequality.
Mots-clés : polynomial
@article{PA_2021_10_3_a5,
     author = {E. G. Kompaneets and V. V. Starkov},
     title = {Smirnov's inequality for polynomials having zeros outside the unit disc},
     journal = {Problemy analiza},
     pages = {71--90},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/}
}
TY  - JOUR
AU  - E. G. Kompaneets
AU  - V. V. Starkov
TI  - Smirnov's inequality for polynomials having zeros outside the unit disc
JO  - Problemy analiza
PY  - 2021
SP  - 71
EP  - 90
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/
LA  - en
ID  - PA_2021_10_3_a5
ER  - 
%0 Journal Article
%A E. G. Kompaneets
%A V. V. Starkov
%T Smirnov's inequality for polynomials having zeros outside the unit disc
%J Problemy analiza
%D 2021
%P 71-90
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/
%G en
%F PA_2021_10_3_a5
E. G. Kompaneets; V. V. Starkov. Smirnov's inequality for polynomials having zeros outside the unit disc. Problemy analiza, Tome 10 (2021) no. 3, pp. 71-90. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/

[1] Sur l'ordre de la meilleure approximation des functions continues par des polynomes de degré donné, Mémoires de la Classe des sciences, IV, Deuxiéme série, Académie royale de Belgique, 1912 (in French)

[2] Bernstein S., “Sur la limitation des dérivées des polynomes”, C. R. Math. Acad. Sci. Paris, 190 (1930), 338–341 (in French) | Zbl

[3] Bernstein S. N., Collected works, v. 1, Constructive functions theory (1905–1930), Izd. AN SSSR, M., 1952 (in Russian) | MR | Zbl

[4] Math. Notes, 105:2 (2019), 216–226 | DOI | DOI | MR | Zbl

[5] Ganenkova E. G., Starkov V. V., “Variations on a theme of the Marden and Smirnov operators, differential inequalities for polynomials”, J. Math. Anal. Appl., 476:2 (2019), 696–714 | DOI | MR | Zbl

[6] Goncharov V. L., Theory of the best approximation of functions. Scientific heritage of P. L. Chebyshev, v. 1, Mathematics, Izd. AN SSSR, M.–L., 1945 (in Russian)

[7] Kompaneets E., Starkov V., “Generalization of the Smirnov Operator and Differential Inequalities for Polynomials”, Lobachevskii J. Math., 40:12 (2019), 2043–2051 | DOI | MR | Zbl

[8] Kompaneets E. G., Starkov V. V., “On the Smirnov type inequality for polynomials”, Math. Notes, 2022 (to appear)

[9] Markov A. A., “On a problem posed by D. I. Mendeleev”, Izv. Akad. Nauk. St. Petersburg, 62 (1889), 1–24 (in Russian)

[10] Markov A. A., Selected works on theory of continued fractions and theory of functions deviating least from zero, OGIZ, M.–L., 1948 (in Russian) | MR

[11] Markoff W. A., “Über Polynome die in einen gegebenen Intervalle möglichst wenig von Null adweichen”, Math. Ann., 1916 (in German) | MR

[12] Mendeleev D. I., Investigation of aqueous solutions by specific gravity, Tip. V. Demakova, St. Petersburg, 1887 (in Russian)

[13] Pommerenke Ch., “On the derivative of a polynomial”, Michigan Math. J., 6:4 (1959), 373–375 | DOI | MR | Zbl

[14] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, Oxford University Press, New York, 2002 | MR | Zbl

[15] Smirnoff V. I., “Sur quelques polynomes aux propriétés extrémales”, Transactions of the Kharkov mathematical society, 4:2 (1928), 67–72 (in French)

[16] Smirnov V. I., Lebedev N. A., Constructive theory of functions of a complex variable, Nauka, M.–L., 1964 (in Russian) ; M.I.T. Press, Massachusetts Institute of Technology, Cambridge, MA, 1968 | MR

[17] Steffens K.-G., The history of Approximation theory. From Euler to Bernstein, Birkenhaüser, Boston–Basel–Berlin, 2006 | MR

[18] Szegö G., “Über einen Satz von A. Markoff”, Math. Z., 23 (1925), 45–61 (in German) | DOI | MR | Zbl

[19] Wali S. L., Shah W. M., Liman A., “Inequalities concerning $B$-operators”, Probl. Anal. Issues Anal., 5(23):1 (2016), 55–72 | DOI | MR | Zbl