Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_3_a5, author = {E. G. Kompaneets and V. V. Starkov}, title = {Smirnov's inequality for polynomials having zeros outside the unit disc}, journal = {Problemy analiza}, pages = {71--90}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/} }
E. G. Kompaneets; V. V. Starkov. Smirnov's inequality for polynomials having zeros outside the unit disc. Problemy analiza, Tome 10 (2021) no. 3, pp. 71-90. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a5/
[1] Sur l'ordre de la meilleure approximation des functions continues par des polynomes de degré donné, Mémoires de la Classe des sciences, IV, Deuxiéme série, Académie royale de Belgique, 1912 (in French)
[2] Bernstein S., “Sur la limitation des dérivées des polynomes”, C. R. Math. Acad. Sci. Paris, 190 (1930), 338–341 (in French) | Zbl
[3] Bernstein S. N., Collected works, v. 1, Constructive functions theory (1905–1930), Izd. AN SSSR, M., 1952 (in Russian) | MR | Zbl
[4] Math. Notes, 105:2 (2019), 216–226 | DOI | DOI | MR | Zbl
[5] Ganenkova E. G., Starkov V. V., “Variations on a theme of the Marden and Smirnov operators, differential inequalities for polynomials”, J. Math. Anal. Appl., 476:2 (2019), 696–714 | DOI | MR | Zbl
[6] Goncharov V. L., Theory of the best approximation of functions. Scientific heritage of P. L. Chebyshev, v. 1, Mathematics, Izd. AN SSSR, M.–L., 1945 (in Russian)
[7] Kompaneets E., Starkov V., “Generalization of the Smirnov Operator and Differential Inequalities for Polynomials”, Lobachevskii J. Math., 40:12 (2019), 2043–2051 | DOI | MR | Zbl
[8] Kompaneets E. G., Starkov V. V., “On the Smirnov type inequality for polynomials”, Math. Notes, 2022 (to appear)
[9] Markov A. A., “On a problem posed by D. I. Mendeleev”, Izv. Akad. Nauk. St. Petersburg, 62 (1889), 1–24 (in Russian)
[10] Markov A. A., Selected works on theory of continued fractions and theory of functions deviating least from zero, OGIZ, M.–L., 1948 (in Russian) | MR
[11] Markoff W. A., “Über Polynome die in einen gegebenen Intervalle möglichst wenig von Null adweichen”, Math. Ann., 1916 (in German) | MR
[12] Mendeleev D. I., Investigation of aqueous solutions by specific gravity, Tip. V. Demakova, St. Petersburg, 1887 (in Russian)
[13] Pommerenke Ch., “On the derivative of a polynomial”, Michigan Math. J., 6:4 (1959), 373–375 | DOI | MR | Zbl
[14] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, Oxford University Press, New York, 2002 | MR | Zbl
[15] Smirnoff V. I., “Sur quelques polynomes aux propriétés extrémales”, Transactions of the Kharkov mathematical society, 4:2 (1928), 67–72 (in French)
[16] Smirnov V. I., Lebedev N. A., Constructive theory of functions of a complex variable, Nauka, M.–L., 1964 (in Russian) ; M.I.T. Press, Massachusetts Institute of Technology, Cambridge, MA, 1968 | MR
[17] Steffens K.-G., The history of Approximation theory. From Euler to Bernstein, Birkenhaüser, Boston–Basel–Berlin, 2006 | MR
[18] Szegö G., “Über einen Satz von A. Markoff”, Math. Z., 23 (1925), 45–61 (in German) | DOI | MR | Zbl
[19] Wali S. L., Shah W. M., Liman A., “Inequalities concerning $B$-operators”, Probl. Anal. Issues Anal., 5(23):1 (2016), 55–72 | DOI | MR | Zbl