On the $p$-harmonic radii of circular sectors
Problemy analiza, Tome 10 (2021) no. 3, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by $p$-harmonic one, and the fundamental solution of the Laplace $p$-equation acts as logarithm. In the case of $p=2$, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.
Keywords: condenser capacities, conformal radius, harmonic radius, family of curves.
@article{PA_2021_10_3_a0,
     author = {A. S. Afanaseva-Grigoreva and E. G. Prilepkina},
     title = {On the $p$-harmonic radii of circular sectors},
     journal = {Problemy analiza},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/}
}
TY  - JOUR
AU  - A. S. Afanaseva-Grigoreva
AU  - E. G. Prilepkina
TI  - On the $p$-harmonic radii of circular sectors
JO  - Problemy analiza
PY  - 2021
SP  - 3
EP  - 14
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/
LA  - en
ID  - PA_2021_10_3_a0
ER  - 
%0 Journal Article
%A A. S. Afanaseva-Grigoreva
%A E. G. Prilepkina
%T On the $p$-harmonic radii of circular sectors
%J Problemy analiza
%D 2021
%P 3-14
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/
%G en
%F PA_2021_10_3_a0
A. S. Afanaseva-Grigoreva; E. G. Prilepkina. On the $p$-harmonic radii of circular sectors. Problemy analiza, Tome 10 (2021) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/