On the $p$-harmonic radii of circular sectors
Problemy analiza, Tome 10 (2021) no. 3, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the property of logarithmic concavity of the conformal radius of a circular sector (considered as a function of the angle) extends to the domains of Euclidean space. In this case, the conformal radius is replaced by $p$-harmonic one, and the fundamental solution of the Laplace $p$-equation acts as logarithm. In the case of $p=2$, the presence of an asymptotic formula for the capacity of a degenerate condenser allows us to generalize this result to the case of a finite set of points. The method of the proof leads to the solution of one particular case of an open problem of A. Yu. Solynin.
Keywords: condenser capacities, conformal radius, harmonic radius, family of curves.
@article{PA_2021_10_3_a0,
     author = {A. S. Afanaseva-Grigoreva and E. G. Prilepkina},
     title = {On the $p$-harmonic radii of circular sectors},
     journal = {Problemy analiza},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/}
}
TY  - JOUR
AU  - A. S. Afanaseva-Grigoreva
AU  - E. G. Prilepkina
TI  - On the $p$-harmonic radii of circular sectors
JO  - Problemy analiza
PY  - 2021
SP  - 3
EP  - 14
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/
LA  - en
ID  - PA_2021_10_3_a0
ER  - 
%0 Journal Article
%A A. S. Afanaseva-Grigoreva
%A E. G. Prilepkina
%T On the $p$-harmonic radii of circular sectors
%J Problemy analiza
%D 2021
%P 3-14
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/
%G en
%F PA_2021_10_3_a0
A. S. Afanaseva-Grigoreva; E. G. Prilepkina. On the $p$-harmonic radii of circular sectors. Problemy analiza, Tome 10 (2021) no. 3, pp. 3-14. http://geodesic.mathdoc.fr/item/PA_2021_10_3_a0/

[1] Ahlfors L. V., Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, N.J., 1966 | MR | Zbl

[2] Bandle C., Flucher M., “Harmonic radius and concentration of energy, hyperbolic radius and Liouvilles equations $\Delta U=0$ and $\Delta U=U^{\frac{n+2}{n-2}}$”, SIAM Review, 38:2 (1996), 191–238 | DOI | MR | Zbl

[3] Dubinin V. N., Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhauser/Springer, Basel, 2014 | DOI | MR | Zbl

[4] Dubinin V. N., “Green energy and extremal decompositions”, Probl. Anal. Issues Anal., 8(26):3 (2019), 38–44 | DOI | MR | Zbl

[5] Dubinin V. N., Prilepkina E. G., “On extremal decomposition of n-space domains”, J. Math. Sci., 105:4 (2001), 2180–2189 | DOI | MR | Zbl

[6] Garabedian P. R., Schiffer M., “Convexity of domain functionals”, J. Anal. Math., 2 (1953), 281–368 | DOI | MR | Zbl

[7] Kalmykov S., Prilepkina E., “Extremal decomposition problems for $p$-harmonic radius”, Anal. Math., 43:1 (2017), 49–65 | DOI | MR | Zbl

[8] Kalmykov S. I., Prilepkina E. G., “On the p-harmonic Robin radius in the Euclidean space”, J. Math. Sci., 225:6 (2017), 969–979 | DOI | MR | Zbl

[9] Laugesen R., “Extremal problems involving logarithmic and Green capacity”, Duke Math. J., 70:2 (1993), 445–480 | DOI | MR | Zbl

[10] Soviet Math. Dokl., 43:1 (1991), 189–192 | MR | Zbl

[11] Pouliasis S., “Concavity of condenser energy under boundary variations”, J. Geom. Anal., 31:8 (2021), 7726–7740 | DOI | MR | Zbl

[12] Shlyk V. A., “The equality between $p$-capacity and $p$-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[13] Wang W., “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1 (2007), 155–174 | DOI | MR | Zbl