Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
Problemy analiza, Tome 10 (2021) no. 2, pp. 44-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the summability method $A^{r, p}$ and obtain necessary and sufficient Tauberian conditions under which the ordinary convergence of a sequence follows from its summability $A^{r, p}$. The main results are new Tauberian theorems for the summability method $A^{r, p}$, which are generalizations of the corresponding Tauberian theorems for the summability method $A^r$ introduced by Başar.
Keywords: summability by $A^{r, p}$ method, slow oscillation, slow decrease, Tauberian condition.
@article{PA_2021_10_2_a3,
     author = {\c{C}. Kambak and \.I. \c{C}anak},
     title = {Necessary and sufficient {Tauberian} conditions under which convergence follows from summability $A^{r, p}$},
     journal = {Problemy analiza},
     pages = {44--53},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/}
}
TY  - JOUR
AU  - Ç. Kambak
AU  - İ. Çanak
TI  - Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
JO  - Problemy analiza
PY  - 2021
SP  - 44
EP  - 53
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/
LA  - en
ID  - PA_2021_10_2_a3
ER  - 
%0 Journal Article
%A Ç. Kambak
%A İ. Çanak
%T Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
%J Problemy analiza
%D 2021
%P 44-53
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/
%G en
%F PA_2021_10_2_a3
Ç. Kambak; İ. Çanak. Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$. Problemy analiza, Tome 10 (2021) no. 2, pp. 44-53. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/

[1] Ayd{\i}n C., Başar F., “On the new sequence spaces which include the spaces $c_0$ and $c$”, Hokkaido Math. J., 33:2 (2004), 383–398 | DOI | MR | Zbl

[2] Ayd{\i}n C., Başar F., “Some new paranormed sequence spaces”, Inform Sci., 160:1-4 (2004), 27–40 | DOI | MR | Zbl

[3] Ayd{\i}n C., Başar F., “Some new difference sequence spaces”, Appl. Math. Comput., 157:3 (2004), 677–693 | DOI | MR | Zbl

[4] Ayd{\i}n C., Başar F., “Some new sequence spaces which include the spaces $\ell _p$ and $\ell _{\infty}$”, Demonstratio Math., 38:3 (2005), 641–656 | DOI | MR | Zbl

[5] Ayd{\i}n C., Başar F., “Some generalizations of the sequence space $a^r_p$”, Iran. J. Sci. Technol. Trans. A. Sci., 30:A2 (2006), 175–190 | DOI | MR

[6] Başar F., “A note on the triangle limitation methods”, F{\i}rat Univ. Fen. Müh. Bil. Dergisi, 5:1 (1993), 113–117

[7] Hardy G.H., Divergent series, Chalsea, New York, 1991 | MR

[8] Kambak Ç., Çanak İ., “An alternative proof of a Tauberian theorem for the weighted mean method of summability”, Natl. Acad. Sci. Lett., 42:4 (2019), 355–357 | DOI | MR

[9] Moricz F., Rhoades B.E., “Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability. II”, Acta Math. Hungar, 102:4 (2004), 279–285 | DOI | MR | Zbl

[10] Mursaleen M., Başar F., Sequence Spaces: Topics in Modern Summability Theory, Mathematics and Its Applications, CRC Press, Taylor Francis Group, Boca Raton–London–New York, 2020 | MR | Zbl

[11] Schmidt R., “Über divergente Folgen und lineare Mittelbildungen”, Math. Z., 22 (1925), 89–152 | DOI | MR | Zbl

[12] Talo Ö., Başar F., “Necessary and sufficient Tauberian conditions for the $A^r$ method of summability”, Math. J. Okayama Univ., 60 (2018), 209–219 | MR | Zbl