Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
Problemy analiza, Tome 10 (2021) no. 2, pp. 44-53

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the summability method $A^{r, p}$ and obtain necessary and sufficient Tauberian conditions under which the ordinary convergence of a sequence follows from its summability $A^{r, p}$. The main results are new Tauberian theorems for the summability method $A^{r, p}$, which are generalizations of the corresponding Tauberian theorems for the summability method $A^r$ introduced by Başar.
Keywords: summability by $A^{r, p}$ method, slow oscillation, slow decrease, Tauberian condition.
@article{PA_2021_10_2_a3,
     author = {\c{C}. Kambak and \.I. \c{C}anak},
     title = {Necessary and sufficient {Tauberian} conditions under which convergence follows from summability $A^{r, p}$},
     journal = {Problemy analiza},
     pages = {44--53},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/}
}
TY  - JOUR
AU  - Ç. Kambak
AU  - İ. Çanak
TI  - Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
JO  - Problemy analiza
PY  - 2021
SP  - 44
EP  - 53
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/
LA  - en
ID  - PA_2021_10_2_a3
ER  - 
%0 Journal Article
%A Ç. Kambak
%A İ. Çanak
%T Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
%J Problemy analiza
%D 2021
%P 44-53
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/
%G en
%F PA_2021_10_2_a3
Ç. Kambak; İ. Çanak. Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$. Problemy analiza, Tome 10 (2021) no. 2, pp. 44-53. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/