Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_2_a3, author = {\c{C}. Kambak and \.I. \c{C}anak}, title = {Necessary and sufficient {Tauberian} conditions under which convergence follows from summability $A^{r, p}$}, journal = {Problemy analiza}, pages = {44--53}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/} }
TY - JOUR AU - Ç. Kambak AU - İ. Çanak TI - Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$ JO - Problemy analiza PY - 2021 SP - 44 EP - 53 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/ LA - en ID - PA_2021_10_2_a3 ER -
Ç. Kambak; İ. Çanak. Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$. Problemy analiza, Tome 10 (2021) no. 2, pp. 44-53. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a3/
[1] Ayd{\i}n C., Başar F., “On the new sequence spaces which include the spaces $c_0$ and $c$”, Hokkaido Math. J., 33:2 (2004), 383–398 | DOI | MR | Zbl
[2] Ayd{\i}n C., Başar F., “Some new paranormed sequence spaces”, Inform Sci., 160:1-4 (2004), 27–40 | DOI | MR | Zbl
[3] Ayd{\i}n C., Başar F., “Some new difference sequence spaces”, Appl. Math. Comput., 157:3 (2004), 677–693 | DOI | MR | Zbl
[4] Ayd{\i}n C., Başar F., “Some new sequence spaces which include the spaces $\ell _p$ and $\ell _{\infty}$”, Demonstratio Math., 38:3 (2005), 641–656 | DOI | MR | Zbl
[5] Ayd{\i}n C., Başar F., “Some generalizations of the sequence space $a^r_p$”, Iran. J. Sci. Technol. Trans. A. Sci., 30:A2 (2006), 175–190 | DOI | MR
[6] Başar F., “A note on the triangle limitation methods”, F{\i}rat Univ. Fen. Müh. Bil. Dergisi, 5:1 (1993), 113–117
[7] Hardy G.H., Divergent series, Chalsea, New York, 1991 | MR
[8] Kambak Ç., Çanak İ., “An alternative proof of a Tauberian theorem for the weighted mean method of summability”, Natl. Acad. Sci. Lett., 42:4 (2019), 355–357 | DOI | MR
[9] Moricz F., Rhoades B.E., “Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability. II”, Acta Math. Hungar, 102:4 (2004), 279–285 | DOI | MR | Zbl
[10] Mursaleen M., Başar F., Sequence Spaces: Topics in Modern Summability Theory, Mathematics and Its Applications, CRC Press, Taylor Francis Group, Boca Raton–London–New York, 2020 | MR | Zbl
[11] Schmidt R., “Über divergente Folgen und lineare Mittelbildungen”, Math. Z., 22 (1925), 89–152 | DOI | MR | Zbl
[12] Talo Ö., Başar F., “Necessary and sufficient Tauberian conditions for the $A^r$ method of summability”, Math. J. Okayama Univ., 60 (2018), 209–219 | MR | Zbl