Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_2_a2, author = {M. Boulanouar}, title = {Mathematical analysis of a model of age-cycle length structured cell population with quiescence}, journal = {Problemy analiza}, pages = {27--43}, publisher = {mathdoc}, volume = {10}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/} }
M. Boulanouar. Mathematical analysis of a model of age-cycle length structured cell population with quiescence. Problemy analiza, Tome 10 (2021) no. 2, pp. 27-43. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/
[1] Banasiak J., Arlotti L., Perturbations of Positive Semigroups with Applications, Springer-Verlag, London, 2006 | DOI | MR | Zbl
[2] Boulanouar M., “On a Mathematical model of Age-Cycle Length Structured Cell Population With Non-Compact Boundary Conditions”, Math. Meth. Appl. Sci., 39:7 (2016), 1855–1876 | DOI | MR | Zbl
[3] Boulanouar M., “A Mathematical Analysis of a Model of Structured Population (I)”, Diff. Int. Equ., 25:9/10 (2012), 821–852 | MR | Zbl
[4] Boulanouar M., “A Mathematical study in the theory of dynamic population”, Journal. Math. Anal. Appl., 255 (2001), 230–259 | DOI | MR | Zbl
[5] Rotenberg M., “Transport theory for growing cell populations”, J. Theor. Biol., 1983, no. 103, 191–199 | DOI | MR
[6] Webb G. F., “Dynamics of Structured Populations with Inherited Properties”, Comput. Math. Applic., 13:9-11 (1987), 749–757 | DOI | MR | Zbl