Mathematical analysis of a model of age-cycle length structured cell population with quiescence
Problemy analiza, Tome 10 (2021) no. 2, pp. 27-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we model the dynamics of an Age-Cycle Length structured cell population. At each time, the cell population is divided into two interacting compartments: Proliferating cells and Quiescent cells. Each cell is then: Proliferating (Active) or Quiescent (Resting). We prove that this new Proliferation-Quiescence model is well posed.
Keywords: partial differential equations, semigroup of linear operators, structured cell population.
@article{PA_2021_10_2_a2,
     author = {M. Boulanouar},
     title = {Mathematical analysis of a model of age-cycle length structured cell population with quiescence},
     journal = {Problemy analiza},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/}
}
TY  - JOUR
AU  - M. Boulanouar
TI  - Mathematical analysis of a model of age-cycle length structured cell population with quiescence
JO  - Problemy analiza
PY  - 2021
SP  - 27
EP  - 43
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/
LA  - en
ID  - PA_2021_10_2_a2
ER  - 
%0 Journal Article
%A M. Boulanouar
%T Mathematical analysis of a model of age-cycle length structured cell population with quiescence
%J Problemy analiza
%D 2021
%P 27-43
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/
%G en
%F PA_2021_10_2_a2
M. Boulanouar. Mathematical analysis of a model of age-cycle length structured cell population with quiescence. Problemy analiza, Tome 10 (2021) no. 2, pp. 27-43. http://geodesic.mathdoc.fr/item/PA_2021_10_2_a2/

[1] Banasiak J., Arlotti L., Perturbations of Positive Semigroups with Applications, Springer-Verlag, London, 2006 | DOI | MR | Zbl

[2] Boulanouar M., “On a Mathematical model of Age-Cycle Length Structured Cell Population With Non-Compact Boundary Conditions”, Math. Meth. Appl. Sci., 39:7 (2016), 1855–1876 | DOI | MR | Zbl

[3] Boulanouar M., “A Mathematical Analysis of a Model of Structured Population (I)”, Diff. Int. Equ., 25:9/10 (2012), 821–852 | MR | Zbl

[4] Boulanouar M., “A Mathematical study in the theory of dynamic population”, Journal. Math. Anal. Appl., 255 (2001), 230–259 | DOI | MR | Zbl

[5] Rotenberg M., “Transport theory for growing cell populations”, J. Theor. Biol., 1983, no. 103, 191–199 | DOI | MR

[6] Webb G. F., “Dynamics of Structured Populations with Inherited Properties”, Comput. Math. Applic., 13:9-11 (1987), 749–757 | DOI | MR | Zbl