Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_1_a5, author = {S. S. Volosivets}, title = {Modified modulus of smoothness and approximation in weighted {Lorentz} spaces by {Borel} and {Euler} means}, journal = {Problemy analiza}, pages = {87--100}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/} }
TY - JOUR AU - S. S. Volosivets TI - Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means JO - Problemy analiza PY - 2021 SP - 87 EP - 100 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/ LA - en ID - PA_2021_10_1_a5 ER -
S. S. Volosivets. Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means. Problemy analiza, Tome 10 (2021) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/
[1] Akgün R., Yildirir Y. E., “Jackson-Stechkin type inequality in weighted Lorentz spaces”, Math. Inequal. Appl., 18:4 (2015), 1283–1293 | DOI | MR | Zbl
[2] Akgün R., Yildirir Y. E., “Improved direct and converse theorems in weighted Lorentz spaces”, Bull. Belg. Math. Soc. Simon Stevin, 23:2 (2016), 247–262 | DOI | MR | Zbl
[3] Bary N. K., A treatise on trigonometric series, Pergamon Press, New York, 1964 | MR | Zbl
[4] Bary N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Moskov. Mat. Obshch., 5, 1956, 483–522 (in Russian) | MR | Zbl
[5] Chang H. M., Hunt R. A., Kurtz D. S., “The Hardy-Littlewood maximal function on $L(p,q)$ spaces with weights”, Indiana Univ. Math. J., 31:1 (1982), 109–120 | DOI | MR
[6] DeVore R. A., Lorentz G. G., Constructive approximation, Springer, Berlin-Heidelberg-New York, 1993 | MR | Zbl
[7] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl
[8] Iofina T. V., “Approximation of functions by Borel means of Fourier series with respect to multiplicative systems”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 11:3(1) (2011), 15–21 (in Russian) | DOI | MR
[9] Israfilov D., Kokilashvili V., Samko S., “Approximation in weighted Lebesgue and Smirnov spaces with variable exponents”, Proc. A. Razmadze Math. Inst., 143 (2007), 25–35 | MR | Zbl
[10] Israfilov D. M., Testici A., “Some inverse and simultaneous approximation theorems in weighted variable exponent Lebesgue spaces”, Analysis Math., 44:4 (2018), 475–492 (in Russian) | DOI | MR | Zbl
[11] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl
[12] Kokilashvili V., Yildirir Y. E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Funct. Spaces Appl., 8:1 (2010), 67–86 | DOI | MR | Zbl
[13] Ky N. X., “Moduli of mean smoothness and approximation with $A_p$-weights”, Annales Univ. Sci. Budapest, 40 (1997), 37–48 | MR
[14] Ky N. X., “An Alexits lemma and its applications in approximation theory”, Functions, Series, Operators, eds. L. Leindler, F. Schipp, J. Szabados, Budapest, 2002, 287–296 | MR
[15] Lorentz G. G., “On the theory of spaces $\Lambda$”, Pacific J. Math., 1:3 (1951), 411–429 | DOI | MR | Zbl
[16] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[17] Izv. Math., 77:2, 407–434 | DOI | DOI | MR | Zbl
[18] Mat. sbornik, 208:1 (2017), 48–64 | DOI | MR | Zbl
[19] Volosivets S. S., Tyuleneva A. A., “Approximation of functions and their conjugates in $L^p$ and uniform metric by Euler means”, Demonstr. Math., 51:1 (2018), 141–150 | DOI | MR | Zbl
[20] Yildirir Y. E., Israfilov D. M., “Approximation theorems in weighted Lorentz spaces”, Carpathian J. Math., 26:1 (2010), 108–119 | MR | Zbl
[21] Yurt H., Guven A., “Multivariate Approximation theorems in weighted Lorentz spaces”, Mediterr. J. Math., 12:3 (2015), 863–876 | DOI | MR | Zbl