Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means
Problemy analiza, Tome 10 (2021) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using one-sided Steklov means, we introduce a new modulus of smoothness in weighted Lorentz spaces. The direct and inverse approximation theorem for this modulus of smoothness are proved. Also, we estimate the rate of approximation by the Borel and Euler means in weighted Lorentz spaces.
Keywords: weighted Lorentz spaces, direct and inverse approximation theorems, Borel means, Euler means.
@article{PA_2021_10_1_a5,
     author = {S. S. Volosivets},
     title = {Modified modulus of smoothness and approximation in weighted {Lorentz} spaces by {Borel} and {Euler} means},
     journal = {Problemy analiza},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means
JO  - Problemy analiza
PY  - 2021
SP  - 87
EP  - 100
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/
LA  - en
ID  - PA_2021_10_1_a5
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means
%J Problemy analiza
%D 2021
%P 87-100
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/
%G en
%F PA_2021_10_1_a5
S. S. Volosivets. Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means. Problemy analiza, Tome 10 (2021) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a5/

[1] Akgün R., Yildirir Y. E., “Jackson-Stechkin type inequality in weighted Lorentz spaces”, Math. Inequal. Appl., 18:4 (2015), 1283–1293 | DOI | MR | Zbl

[2] Akgün R., Yildirir Y. E., “Improved direct and converse theorems in weighted Lorentz spaces”, Bull. Belg. Math. Soc. Simon Stevin, 23:2 (2016), 247–262 | DOI | MR | Zbl

[3] Bary N. K., A treatise on trigonometric series, Pergamon Press, New York, 1964 | MR | Zbl

[4] Bary N. K., Stechkin S. B., “Best approximations and differential properties of two conjugate functions”, Trudy Moskov. Mat. Obshch., 5, 1956, 483–522 (in Russian) | MR | Zbl

[5] Chang H. M., Hunt R. A., Kurtz D. S., “The Hardy-Littlewood maximal function on $L(p,q)$ spaces with weights”, Indiana Univ. Math. J., 31:1 (1982), 109–120 | DOI | MR

[6] DeVore R. A., Lorentz G. G., Constructive approximation, Springer, Berlin-Heidelberg-New York, 1993 | MR | Zbl

[7] Hardy G. H., Divergent series, Oxford Univ. Press, Oxford, 1949 | MR | Zbl

[8] Iofina T. V., “Approximation of functions by Borel means of Fourier series with respect to multiplicative systems”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 11:3(1) (2011), 15–21 (in Russian) | DOI | MR

[9] Israfilov D., Kokilashvili V., Samko S., “Approximation in weighted Lebesgue and Smirnov spaces with variable exponents”, Proc. A. Razmadze Math. Inst., 143 (2007), 25–35 | MR | Zbl

[10] Israfilov D. M., Testici A., “Some inverse and simultaneous approximation theorems in weighted variable exponent Lebesgue spaces”, Analysis Math., 44:4 (2018), 475–492 (in Russian) | DOI | MR | Zbl

[11] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co. Inc., River Edge, NJ, 1991 | MR | Zbl

[12] Kokilashvili V., Yildirir Y. E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Funct. Spaces Appl., 8:1 (2010), 67–86 | DOI | MR | Zbl

[13] Ky N. X., “Moduli of mean smoothness and approximation with $A_p$-weights”, Annales Univ. Sci. Budapest, 40 (1997), 37–48 | MR

[14] Ky N. X., “An Alexits lemma and its applications in approximation theory”, Functions, Series, Operators, eds. L. Leindler, F. Schipp, J. Szabados, Budapest, 2002, 287–296 | MR

[15] Lorentz G. G., “On the theory of spaces $\Lambda$”, Pacific J. Math., 1:3 (1951), 411–429 | DOI | MR | Zbl

[16] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[17] Izv. Math., 77:2, 407–434 | DOI | DOI | MR | Zbl

[18] Mat. sbornik, 208:1 (2017), 48–64 | DOI | MR | Zbl

[19] Volosivets S. S., Tyuleneva A. A., “Approximation of functions and their conjugates in $L^p$ and uniform metric by Euler means”, Demonstr. Math., 51:1 (2018), 141–150 | DOI | MR | Zbl

[20] Yildirir Y. E., Israfilov D. M., “Approximation theorems in weighted Lorentz spaces”, Carpathian J. Math., 26:1 (2010), 108–119 | MR | Zbl

[21] Yurt H., Guven A., “Multivariate Approximation theorems in weighted Lorentz spaces”, Mediterr. J. Math., 12:3 (2015), 863–876 | DOI | MR | Zbl