Harmonic mappings with the fixed analytic part
Problemy analiza, Tome 10 (2021) no. 1, pp. 69-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we consider a class of sense-preserving harmonic mappings whose analytic part is convex in one direction. We prove that functions in this class are close-to-convex for certain values of parameters. Further, we obtain bounds on pre-Schwarzian derivatives and bounds on the Bloch's constant. Finally, we obtain coefficient bounds, growth and distortion results.
Keywords: univalent harmonic mappings, functions convex in one direction, pre-Schwarzian derivative, coefficient bound, growth and distortion results.
Mots-clés : Bloch's constant
@article{PA_2021_10_1_a4,
     author = {Rajbala and Jugal K. Prajapat},
     title = {Harmonic mappings with the fixed analytic part},
     journal = {Problemy analiza},
     pages = {69--86},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/}
}
TY  - JOUR
AU  - Rajbala
AU  - Jugal K. Prajapat
TI  - Harmonic mappings with the fixed analytic part
JO  - Problemy analiza
PY  - 2021
SP  - 69
EP  - 86
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/
LA  - en
ID  - PA_2021_10_1_a4
ER  - 
%0 Journal Article
%A Rajbala
%A Jugal K. Prajapat
%T Harmonic mappings with the fixed analytic part
%J Problemy analiza
%D 2021
%P 69-86
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/
%G en
%F PA_2021_10_1_a4
Rajbala; Jugal K. Prajapat. Harmonic mappings with the fixed analytic part. Problemy analiza, Tome 10 (2021) no. 1, pp. 69-86. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/

[1] Avkhadiev F. G., Wirths K. J., Schwarz-Pick Type Inequalities, Birkhauser Verlag AG, Basel-Boston-Berlin, 2009 | DOI | MR | Zbl

[2] Becker J., “Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl

[3] Chen H., Gauthier P. M., Hengartner W., “Bloch constants theorem for planar harmonic mappings”, Proc. Amer. Math. Soc., 128:11 (2000), 3231–3240 | DOI | MR | Zbl

[4] Chen Sh., Ponnusamy S., Wang X., “Bloch constant and Landau's theorem for planar p-harmonic mappings”, J. Math. Anal. Appl., 373:1 (2011), 102–110 | DOI | MR | Zbl

[5] Chuaqui M., Duren P., Osgood B., “Curvature properties of planar harmonic mappings”, Comput. Methods Funct. Theory, 4:4 (2004), 127–142 | DOI | MR | Zbl

[6] Clunie J. G., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. AI, 9 (1984), 3–25 | DOI | MR | Zbl

[7] Colonna F., “The Bloch constant of bounded harmonic mappings”, Indiana Univ. Math. J., 38:4 (1989), 829–840 www.jstor.org/stable/24895369 | DOI | MR | Zbl

[8] Hernández R., Martín M., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25 (2015), 64–91 | DOI | MR | Zbl

[9] Liu M.-S., “Estimates on Bloch constants for planar harmonic mappings”, Sci. China Ser. A, 52 (2009), 87–93 | DOI | MR | Zbl

[10] Liu M.-S., Luo L.-F., Luo X., “Landau-Bloch type theorems for strongly bounded harmonic mappings”, Monatsh. Math., 191 (2020), 175–185 | DOI | MR | Zbl

[11] Ma W., Minda D., “A unified treatment of some special classes of univalent functions”, Proceedings of the Conference on Complex Analysis, eds. Li Z., Ren F., Yang L., Zhang S., International Press Inc, 1992, 157–169 | MR

[12] Muhanna Y. A., Ponnusamy S., “Extreme points method and univalent harmonic mappings”, Complex Analysis and Dynamical Systems VI, Contemp. Math., 667, 2016, 223–237 | DOI | MR | Zbl

[13] Obradović M., Ponnusamy S., Wirths K. J., “Coefficient characterizations and sections for some univalent functions”, Sib. Math. J., 54:4 (2013), 679–696 | DOI | MR | Zbl

[14] Ozaki S., “On the theory of multivalent functions. II”, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A, 4 (1941), 45–87 https://www.jstor.org/stable/43700364 | MR | Zbl

[15] Ponnusamy S., Qiao J., Wang X., “Uniformly locally univalent harmonic mappings”, Proc. Indian Acad. Sci. (Math. Sci.), 128 (2018), 0032 | DOI | MR

[16] Ponnusamy S., Prajapat J. K., Kaliraj A. S., “Uniformly starlike and uniformly convex harmonic mappings”, J. Anal., 23 (2015), 121–129 | MR | Zbl

[17] Ponnusamy S., Starkov V. V., “The Jacobian Conjecture and Injectivity Conditions”, Bull. Malays. Math. Sci. Soc., 41 (2018), 2099–2115 | DOI | MR | Zbl

[18] Ponnusamy S., Vasudevarao A., “Region of Variability of two subclasses of univalent functions”, J. Math. Anal. Appl., 332:2 (2007), 1322–1333 | DOI | MR

[19] Prajapat J. K., Manivannan M., Maharana S., “Harmonic mappings with analytic part convex in one direction”, J. Anal., 28 (2020), 261–272 | DOI | MR

[20] Umezava T., “Analytic functions convex in one direction”, J. Math. Soc. Japan, 4 (1952), 194–202 | DOI | MR

[21] Yamashita S., “Almost locally univalent functions”, Monatsh Math., 81 (1976), 235–240 | DOI | MR | Zbl