Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2021_10_1_a4, author = {Rajbala and Jugal K. Prajapat}, title = {Harmonic mappings with the fixed analytic part}, journal = {Problemy analiza}, pages = {69--86}, publisher = {mathdoc}, volume = {10}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/} }
Rajbala; Jugal K. Prajapat. Harmonic mappings with the fixed analytic part. Problemy analiza, Tome 10 (2021) no. 1, pp. 69-86. http://geodesic.mathdoc.fr/item/PA_2021_10_1_a4/
[1] Avkhadiev F. G., Wirths K. J., Schwarz-Pick Type Inequalities, Birkhauser Verlag AG, Basel-Boston-Berlin, 2009 | DOI | MR | Zbl
[2] Becker J., “Löwnersche differentialgleichung und quasikonform fortsetzbare schlichte funktionen”, J. Reine Angew. Math., 255 (1972), 23–43 | MR | Zbl
[3] Chen H., Gauthier P. M., Hengartner W., “Bloch constants theorem for planar harmonic mappings”, Proc. Amer. Math. Soc., 128:11 (2000), 3231–3240 | DOI | MR | Zbl
[4] Chen Sh., Ponnusamy S., Wang X., “Bloch constant and Landau's theorem for planar p-harmonic mappings”, J. Math. Anal. Appl., 373:1 (2011), 102–110 | DOI | MR | Zbl
[5] Chuaqui M., Duren P., Osgood B., “Curvature properties of planar harmonic mappings”, Comput. Methods Funct. Theory, 4:4 (2004), 127–142 | DOI | MR | Zbl
[6] Clunie J. G., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Ser. AI, 9 (1984), 3–25 | DOI | MR | Zbl
[7] Colonna F., “The Bloch constant of bounded harmonic mappings”, Indiana Univ. Math. J., 38:4 (1989), 829–840 www.jstor.org/stable/24895369 | DOI | MR | Zbl
[8] Hernández R., Martín M., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25 (2015), 64–91 | DOI | MR | Zbl
[9] Liu M.-S., “Estimates on Bloch constants for planar harmonic mappings”, Sci. China Ser. A, 52 (2009), 87–93 | DOI | MR | Zbl
[10] Liu M.-S., Luo L.-F., Luo X., “Landau-Bloch type theorems for strongly bounded harmonic mappings”, Monatsh. Math., 191 (2020), 175–185 | DOI | MR | Zbl
[11] Ma W., Minda D., “A unified treatment of some special classes of univalent functions”, Proceedings of the Conference on Complex Analysis, eds. Li Z., Ren F., Yang L., Zhang S., International Press Inc, 1992, 157–169 | MR
[12] Muhanna Y. A., Ponnusamy S., “Extreme points method and univalent harmonic mappings”, Complex Analysis and Dynamical Systems VI, Contemp. Math., 667, 2016, 223–237 | DOI | MR | Zbl
[13] Obradović M., Ponnusamy S., Wirths K. J., “Coefficient characterizations and sections for some univalent functions”, Sib. Math. J., 54:4 (2013), 679–696 | DOI | MR | Zbl
[14] Ozaki S., “On the theory of multivalent functions. II”, Sci. Rep. Tokyo Bunrika Daigaku. Sect. A, 4 (1941), 45–87 https://www.jstor.org/stable/43700364 | MR | Zbl
[15] Ponnusamy S., Qiao J., Wang X., “Uniformly locally univalent harmonic mappings”, Proc. Indian Acad. Sci. (Math. Sci.), 128 (2018), 0032 | DOI | MR
[16] Ponnusamy S., Prajapat J. K., Kaliraj A. S., “Uniformly starlike and uniformly convex harmonic mappings”, J. Anal., 23 (2015), 121–129 | MR | Zbl
[17] Ponnusamy S., Starkov V. V., “The Jacobian Conjecture and Injectivity Conditions”, Bull. Malays. Math. Sci. Soc., 41 (2018), 2099–2115 | DOI | MR | Zbl
[18] Ponnusamy S., Vasudevarao A., “Region of Variability of two subclasses of univalent functions”, J. Math. Anal. Appl., 332:2 (2007), 1322–1333 | DOI | MR
[19] Prajapat J. K., Manivannan M., Maharana S., “Harmonic mappings with analytic part convex in one direction”, J. Anal., 28 (2020), 261–272 | DOI | MR
[20] Umezava T., “Analytic functions convex in one direction”, J. Math. Soc. Japan, 4 (1952), 194–202 | DOI | MR
[21] Yamashita S., “Almost locally univalent functions”, Monatsh Math., 81 (1976), 235–240 | DOI | MR | Zbl