Comparison between some sixth convergence order solvers under the same set of criteria
Problemy analiza, Tome 9 (2020) no. 3, pp. 54-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different set of criteria based on the seventh derivative are used for convergence of sixth order methods. Then, these methods are compared using numerical examples. But we do not know: if the results of those comparisons are true if the examples change; the largest radii of convergence; error estimates on distance between the iterate and solution, and uniqueness results that are computable. We address these concerns using only the first derivative and a common set of criteria. Numerical experiments are used to test the convergence criteria and further validate the theoretical results. Our technique can be used to make comparisons between other methods of the same order.
Keywords: Banach space, sixth convergence order methods
Mots-clés : local convergence.
@article{PA_2020_9_3_a3,
     author = {I. K. Argyros and S. George},
     title = {Comparison between some sixth convergence order solvers under the same set of criteria},
     journal = {Problemy analiza},
     pages = {54--65},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/}
}
TY  - JOUR
AU  - I. K. Argyros
AU  - S. George
TI  - Comparison between some sixth convergence order solvers under the same set of criteria
JO  - Problemy analiza
PY  - 2020
SP  - 54
EP  - 65
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/
LA  - en
ID  - PA_2020_9_3_a3
ER  - 
%0 Journal Article
%A I. K. Argyros
%A S. George
%T Comparison between some sixth convergence order solvers under the same set of criteria
%J Problemy analiza
%D 2020
%P 54-65
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/
%G en
%F PA_2020_9_3_a3
I. K. Argyros; S. George. Comparison between some sixth convergence order solvers under the same set of criteria. Problemy analiza, Tome 9 (2020) no. 3, pp. 54-65. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/

[1] Alzahrani A., Bhel R., Alshomrani A., “Some higher order iteration functions for solving nonlinear models”, Appl. Math. Comput., 334 (2018), 80–93 | DOI | MR | Zbl

[2] Amat S., Busquier S., Gutiérrez J.M., “Geometrical constructions of iterative functions to solve nonlinear equations”, J. Comput. Appl. Math., 157 (2003), 197–205 | DOI | MR | Zbl

[3] Argyros I.K., George S., Mathematical modeling for the solution of equations and systems of equations with applications, v. IV, Nova Publishes, New York, 2019 | MR

[4] Argyros I.K., Magreñán A.A., Iterative method and their dynamics with applications, CRC Press, New York, 2017 | MR

[5] Cordero A., Martínez E., Torregrosa J.R., “Iterative methods of order four and five for systems of nonlinear equations”, Appl. Math. Comput., 231 (2009), 541–551 | DOI | MR | Zbl

[6] Grau-Sánchez M., Grau Á., Noguera M., “On the computational efficiency index and some iterative methods for solving systems of nonlinear equations”, J. Comput. Appl. Math., 236 (2011), 1259–1266 | DOI | MR | Zbl

[7] Gutiérrez J.M., Hernández M.A., “A family of Chebyshev–Halley type methods in Banach spaces”, Bull. Aust. Math. Soc., 55 (1997), 113–130 | DOI | MR | Zbl

[8] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl

[9] Ozban A.Y., “Some new variants of Newton's method”, Appl. Math. Lett., 17 (2004), 677–682 | DOI | MR | Zbl

[10] Traub J.F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964 | MR | Zbl

[11] Sharma J. R., Guha R. K., Sharma R., “An efficient fourth order weighted-Newton method for systems of nonlinear equations”, Numer Algor., 62 (2013), 307–323 | DOI | MR | Zbl

[12] Weerakoon S., Fernando T.G.I., “A variant of Newton's method with accelerated third-order convergence”, Appl. Math. Lett., 13 (2000), 87–93 | DOI | MR | Zbl