Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_3_a3, author = {I. K. Argyros and S. George}, title = {Comparison between some sixth convergence order solvers under the same set of criteria}, journal = {Problemy analiza}, pages = {54--65}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/} }
I. K. Argyros; S. George. Comparison between some sixth convergence order solvers under the same set of criteria. Problemy analiza, Tome 9 (2020) no. 3, pp. 54-65. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a3/
[1] Alzahrani A., Bhel R., Alshomrani A., “Some higher order iteration functions for solving nonlinear models”, Appl. Math. Comput., 334 (2018), 80–93 | DOI | MR | Zbl
[2] Amat S., Busquier S., Gutiérrez J.M., “Geometrical constructions of iterative functions to solve nonlinear equations”, J. Comput. Appl. Math., 157 (2003), 197–205 | DOI | MR | Zbl
[3] Argyros I.K., George S., Mathematical modeling for the solution of equations and systems of equations with applications, v. IV, Nova Publishes, New York, 2019 | MR
[4] Argyros I.K., Magreñán A.A., Iterative method and their dynamics with applications, CRC Press, New York, 2017 | MR
[5] Cordero A., Martínez E., Torregrosa J.R., “Iterative methods of order four and five for systems of nonlinear equations”, Appl. Math. Comput., 231 (2009), 541–551 | DOI | MR | Zbl
[6] Grau-Sánchez M., Grau Á., Noguera M., “On the computational efficiency index and some iterative methods for solving systems of nonlinear equations”, J. Comput. Appl. Math., 236 (2011), 1259–1266 | DOI | MR | Zbl
[7] Gutiérrez J.M., Hernández M.A., “A family of Chebyshev–Halley type methods in Banach spaces”, Bull. Aust. Math. Soc., 55 (1997), 113–130 | DOI | MR | Zbl
[8] Ortega J.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | MR | Zbl
[9] Ozban A.Y., “Some new variants of Newton's method”, Appl. Math. Lett., 17 (2004), 677–682 | DOI | MR | Zbl
[10] Traub J.F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, 1964 | MR | Zbl
[11] Sharma J. R., Guha R. K., Sharma R., “An efficient fourth order weighted-Newton method for systems of nonlinear equations”, Numer Algor., 62 (2013), 307–323 | DOI | MR | Zbl
[12] Weerakoon S., Fernando T.G.I., “A variant of Newton's method with accelerated third-order convergence”, Appl. Math. Lett., 13 (2000), 87–93 | DOI | MR | Zbl