Mots-clés : parabolic equation
@article{PA_2020_9_3_a2,
author = {S. N. Antontsev and I. V. Kuznetsov and S. A. Sazhenkov},
title = {A shock layer arising as the source term collapses in the $p(\boldsymbol{x})${-Laplacian} equation},
journal = {Problemy analiza},
pages = {31--53},
year = {2020},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2020_9_3_a2/}
}
TY - JOUR
AU - S. N. Antontsev
AU - I. V. Kuznetsov
AU - S. A. Sazhenkov
TI - A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation
JO - Problemy analiza
PY - 2020
SP - 31
EP - 53
VL - 9
IS - 3
UR - http://geodesic.mathdoc.fr/item/PA_2020_9_3_a2/
LA - en
ID - PA_2020_9_3_a2
ER -
S. N. Antontsev; I. V. Kuznetsov; S. A. Sazhenkov. A shock layer arising as the source term collapses in the $p(\boldsymbol{x})$-Laplacian equation. Problemy analiza, Tome 9 (2020) no. 3, pp. 31-53. http://geodesic.mathdoc.fr/item/PA_2020_9_3_a2/
[1] Agarwal R., Hristova S., O'Regan D., Non-Instantaneous Impulses in Differential Equations, Springer, 2017 | DOI | MR | Zbl
[2] Alkhutov Y. A., Zhikov V. V., “Existence theorems for solutions of parabolic equations with a variable order of nonlinearity”, Tr. Mat. Inst. Steklova, 270, 2010, 21–32 | DOI | MR | Zbl
[3] Alkhutov Y. A., Zhikov V. V., “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Sbornik: Mathematics, 205:3 (2014), 307–318 | DOI | MR | Zbl
[4] Antontsev S., Kuznetsov I., Shmarev S., “Global higher regularity of solutions to singular $p(x, t)$-parabolic equations”, J. Math. Anal. Appl., 466:1 (2018), 238–263 | DOI | MR | Zbl
[5] Antontsev S., Shmarev S., Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Press, 2015 | DOI | MR | Zbl
[6] Coutinho F. A. B., Nogami Y., Toyama F. M., “Unusual situations that arise with the Dirac delta function and its derivative”, Revista Brasileira de Ensino de Física, 31:4 (4302) (2009), 1–7 | DOI | MR
[7] Diening L., Nägele P., Ružička M., “Monotone operator theory for unsteady problems in variable exponent spaces”, Complex Var. Elliptic Equ., 57:11 (2012), 1209–1231 | DOI | MR | Zbl
[8] Griffiths D., Walborn S., “Dirac deltas and discontinuous functions”, Amer. J. Phys., 67 (1999), 446 | DOI | MR | Zbl
[9] Hanche-Olsen H., Holden H., “The Kolmogorov-Riesz compactness theorem”, Expositiones Math., 28 (2010), 385–394 | DOI | MR | Zbl
[10] Kreyszig E., Advanced Engineering Mathematics, 10th edition, John Wiley Sons Inc, 2011 | DOI | MR | Zbl
[11] Miller B. M., Rubinovich E. Ya., Impulsive Control in Continuous and Discrete-Continuous Systems, Springer, 2003 | DOI | MR
[12] Perthame B., Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford, 2002 | MR
[13] Plotnikov P. I., Sazhenkov S. A., “Kinetic formulation for the Graetz-Nusselt ultra-parabolic equation”, J. Math. Anal. Appl., 304 (2005), 703–724 | DOI | MR | Zbl
[14] Sazhenkov S. A., “Noisiness estimate for kinetic solutions of scalar conservation laws”, Collection of scientific works (electronic resource), International Conference ‘Lomonosov’s Readings on Altai: Fundamental Problems of Science and Technology – 2018', ed. Rodionov E. D., Altai State University Press, Barnaul, 2018, 249–257
[15] Serrin J., “Mathematical Principles of Classical Fluid Mechanics”, Fluid Dynamics I, Encyclopedia of Physics, 3/8/1, ed. Truesdell C., Springer, Berlin–Heidelberg, 1959, 125–263 | DOI | MR
[16] Temam R., Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, 2000 | DOI | MR
[17] Vasseur A., “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR | Zbl
[18] Wang J., Fečkan M., Non-Instantaneous Impulsive Differential Equations. Basic Theory and Computation, IOP Publishing, 2018 | DOI