On the problem of mean periodic extension
Problemy analiza, Tome 9 (2020) no. 2, pp. 138-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a study of the following version of the mean periodic extension problem: (i) Suppose that $T\in\mathcal{E}'(\mathbb{R}^n)$, $n\geq 2$, and $E$ is a non-empty subset of $\mathbb{R}^n$. Let $f\in C(E)$. What conditions guarantee that there is an $F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$, such that $F\ast T=0$ in $\mathbb{R}^n$? (ii) If such an extension $F$ exists, then estimate the growth of $F$ at infinity. In this paper, we present a solution of this problem for a broad class of distributions $T$ in the case when $E$ is a segment in $\mathbb{R}^n$.
Keywords: mean periodicity, continuous extension, spherical transform.
Mots-clés : convolution equation
@article{PA_2020_9_2_a8,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {On the problem of mean periodic extension},
     journal = {Problemy analiza},
     pages = {138--151},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - On the problem of mean periodic extension
JO  - Problemy analiza
PY  - 2020
SP  - 138
EP  - 151
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/
LA  - en
ID  - PA_2020_9_2_a8
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T On the problem of mean periodic extension
%J Problemy analiza
%D 2020
%P 138-151
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/
%G en
%F PA_2020_9_2_a8
V. V. Volchkov; Vit. V. Volchkov. On the problem of mean periodic extension. Problemy analiza, Tome 9 (2020) no. 2, pp. 138-151. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/

[1] Helgason S., Groups and Geometric Analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | Zbl

[2] Hörmander L., The Analysis of Linear Partial Differential Operators, v. 1, Springer-Verlag, New York, 1983 | MR

[3] Leont'ev A. F., Sequences of Polynomials in Exponents, Nauka, M., 1980

[4] Riekstyn'sh Z. Ya., Asymptotic Expansions of Integrals, v. 1, Zinatne, Riga, 1974 | MR

[5] Sedletskii A.M., “Biorthogonal expansions of functions in series of exponents on intervals of the real axis”, Russian Math. Surveys, 37:5 (1982), 57–108 | DOI | MR

[6] Sedletskii A. M., “Backward continuation of solutions of a homogeneous convolution equation of retarded type”, Differ. Uravn., 27:4 (1991), 709–711 | MR

[7] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[8] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer-Verlag, London, 2009 | MR | Zbl

[9] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[10] Volchkov V. V., Volchkov Vit. V., “On the extension problem for solutions of homogeneous convolution equations”, Izv. Math., 75:3 (2011), 507–537 | DOI | MR | Zbl