On the problem of mean periodic extension
Problemy analiza, Tome 9 (2020) no. 2, pp. 138-151

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a study of the following version of the mean periodic extension problem: (i) Suppose that $T\in\mathcal{E}'(\mathbb{R}^n)$, $n\geq 2$, and $E$ is a non-empty subset of $\mathbb{R}^n$. Let $f\in C(E)$. What conditions guarantee that there is an $F\in C(\mathbb{R}^n)$ coinciding with $f$ on $E$, such that $F\ast T=0$ in $\mathbb{R}^n$? (ii) If such an extension $F$ exists, then estimate the growth of $F$ at infinity. In this paper, we present a solution of this problem for a broad class of distributions $T$ in the case when $E$ is a segment in $\mathbb{R}^n$.
Keywords: mean periodicity, continuous extension, spherical transform.
Mots-clés : convolution equation
@article{PA_2020_9_2_a8,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {On the problem of mean periodic extension},
     journal = {Problemy analiza},
     pages = {138--151},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - On the problem of mean periodic extension
JO  - Problemy analiza
PY  - 2020
SP  - 138
EP  - 151
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/
LA  - en
ID  - PA_2020_9_2_a8
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T On the problem of mean periodic extension
%J Problemy analiza
%D 2020
%P 138-151
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/
%G en
%F PA_2020_9_2_a8
V. V. Volchkov; Vit. V. Volchkov. On the problem of mean periodic extension. Problemy analiza, Tome 9 (2020) no. 2, pp. 138-151. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a8/