Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_2_a5, author = {Mohsen Shah Hosseini and Baharak Moosavi}, title = {Inequalities for the norm and numerical radius for {Hilbert} $C^{*}$-module operators}, journal = {Problemy analiza}, pages = {87--96}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/} }
TY - JOUR AU - Mohsen Shah Hosseini AU - Baharak Moosavi TI - Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators JO - Problemy analiza PY - 2020 SP - 87 EP - 96 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/ LA - en ID - PA_2020_9_2_a5 ER -
Mohsen Shah Hosseini; Baharak Moosavi. Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators. Problemy analiza, Tome 9 (2020) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/
[1] B. E. Cain, “Improved inequalities for the numerical radius: when inverse commutes with the norm”, Bull. Aust. Math. Soc., 2:1 (2018), 293–296 | DOI | MR | Zbl
[2] S. S. Dragomir, “Rivers inequalities for the numerical radius of pace”, Bull. Aust. Math. Soc., 73 (2006), 255–262 | DOI | MR | Zbl
[3] S. S. Dragomir, “Some inequalities of the Grüss type for the Numerical radius of bounded linear operators in Hilbert spaces”, J. Inequal. Appl., 2008, 763102, 9 pp. | DOI | MR | Zbl
[4] S. S. Dragomir, “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Mathematica, 40:2 (2007), 411–417 | DOI | MR | Zbl
[5] S. S. Dragomir, “Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces”, Tamkang J. Math., 39:1 (2008), 1–7 | DOI | MR | Zbl
[6] K. E. Gustafson, D. K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997 | MR
[7] J. A. R. Holbrook, “Multiplicative properties of the numerical radius in operator theory”, J. Reine Angew. Math., 237 (1969), 166–174 | DOI | MR | Zbl
[8] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, v. 1, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 1997 | MR
[9] F. Kittaneh, “A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix”, Studia Mathematica, 158:1 (2003), 11–17 | DOI | MR | Zbl
[10] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Studia Mathematica, 168:1 (2005), 73–80 | DOI | MR | Zbl
[11] F. Kittaneh, “Numerical radius inequalities for certain $ 2\times 2 $ operator matrices”, Integr. Equ. Oper. Theory, 71 (2011), 129–147 | DOI | MR | Zbl
[12] E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | MR
[13] M. Shah Hosseini, M. E. Omidvar, “Some inequalities for the numerical radius for Hilbert space operators”, Bull. Aust. Math. Soc., 94:3 (2016), 489–496 | DOI | MR | Zbl
[14] M. Shah Hosseini, M. E. Omidvar, “Some Reverse and Numerical Radius Inequalities”, Math. Slovaca, 68:5 (2018), 1121–1128 | DOI | MR | Zbl
[15] B. Moosavi, M. Shah Hosseini, “Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space”, J. Inequ. Special. Func., 10:1 (2019), 77–84 | DOI | MR