Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
Problemy analiza, Tome 9 (2020) no. 2, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce some inequalities between the operator norm and the numerical radius of adjointable operators on Hilbert $C^{*}$-module spaces. Moreover, we establish some new refinements of numerical radius inequalities for Hilbert space operators. More precisely, we prove that if $T \in B(H)$ and $$ \min \Big( \frac{\Vert T+ T^* \Vert^ 2 }{2}, \frac{\Vert T- T^* \Vert^ 2 }{2}\Big) \leq \max \Big(\inf_{ \Vert x \Vert=1}{\Vert Tx \Vert^2}, \inf_{ \Vert x \Vert=1}\Vert T^*x \Vert^2\Big), $$ then \begin{equation*} \Vert T \Vert \leq \sqrt{ 2} \omega(T); \end{equation*} this is a considerable improvement of the classical inequality \begin{equation*} \Vert T \Vert \leq 2\omega(T). \end{equation*}
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius.
@article{PA_2020_9_2_a5,
     author = {Mohsen Shah Hosseini and Baharak Moosavi},
     title = {Inequalities for the norm and numerical radius for {Hilbert} $C^{*}$-module operators},
     journal = {Problemy analiza},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/}
}
TY  - JOUR
AU  - Mohsen Shah Hosseini
AU  - Baharak Moosavi
TI  - Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
JO  - Problemy analiza
PY  - 2020
SP  - 87
EP  - 96
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/
LA  - en
ID  - PA_2020_9_2_a5
ER  - 
%0 Journal Article
%A Mohsen Shah Hosseini
%A Baharak Moosavi
%T Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
%J Problemy analiza
%D 2020
%P 87-96
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/
%G en
%F PA_2020_9_2_a5
Mohsen Shah Hosseini; Baharak Moosavi. Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators. Problemy analiza, Tome 9 (2020) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/

[1] B. E. Cain, “Improved inequalities for the numerical radius: when inverse commutes with the norm”, Bull. Aust. Math. Soc., 2:1 (2018), 293–296 | DOI | MR | Zbl

[2] S. S. Dragomir, “Rivers inequalities for the numerical radius of pace”, Bull. Aust. Math. Soc., 73 (2006), 255–262 | DOI | MR | Zbl

[3] S. S. Dragomir, “Some inequalities of the Grüss type for the Numerical radius of bounded linear operators in Hilbert spaces”, J. Inequal. Appl., 2008, 763102, 9 pp. | DOI | MR | Zbl

[4] S. S. Dragomir, “Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces”, Demonstratio Mathematica, 40:2 (2007), 411–417 | DOI | MR | Zbl

[5] S. S. Dragomir, “Some inequalities for the norm and the numerical radius of linear operators in Hilbert Spaces”, Tamkang J. Math., 39:1 (2008), 1–7 | DOI | MR | Zbl

[6] K. E. Gustafson, D. K. M. Rao, Numerical Range, Springer-Verlag, New York, 1997 | MR

[7] J. A. R. Holbrook, “Multiplicative properties of the numerical radius in operator theory”, J. Reine Angew. Math., 237 (1969), 166–174 | DOI | MR | Zbl

[8] R. V. Kadison, J. R. Ringrose, Fundamentals of the theory of operator algebras, v. 1, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 1997 | MR

[9] F. Kittaneh, “A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix”, Studia Mathematica, 158:1 (2003), 11–17 | DOI | MR | Zbl

[10] F. Kittaneh, “Numerical radius inequalities for Hilbert space operators”, Studia Mathematica, 168:1 (2005), 73–80 | DOI | MR | Zbl

[11] F. Kittaneh, “Numerical radius inequalities for certain $ 2\times 2 $ operator matrices”, Integr. Equ. Oper. Theory, 71 (2011), 129–147 | DOI | MR | Zbl

[12] E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | MR

[13] M. Shah Hosseini, M. E. Omidvar, “Some inequalities for the numerical radius for Hilbert space operators”, Bull. Aust. Math. Soc., 94:3 (2016), 489–496 | DOI | MR | Zbl

[14] M. Shah Hosseini, M. E. Omidvar, “Some Reverse and Numerical Radius Inequalities”, Math. Slovaca, 68:5 (2018), 1121–1128 | DOI | MR | Zbl

[15] B. Moosavi, M. Shah Hosseini, “Some inequalities for the numerical radius for operators in Hilbert $C^*$-modules space”, J. Inequ. Special. Func., 10:1 (2019), 77–84 | DOI | MR