Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
Problemy analiza, Tome 9 (2020) no. 2, pp. 87-96

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce some inequalities between the operator norm and the numerical radius of adjointable operators on Hilbert $C^{*}$-module spaces. Moreover, we establish some new refinements of numerical radius inequalities for Hilbert space operators. More precisely, we prove that if $T \in B(H)$ and $$ \min \Big( \frac{\Vert T+ T^* \Vert^ 2 }{2}, \frac{\Vert T- T^* \Vert^ 2 }{2}\Big) \leq \max \Big(\inf_{ \Vert x \Vert=1}{\Vert Tx \Vert^2}, \inf_{ \Vert x \Vert=1}\Vert T^*x \Vert^2\Big), $$ then \begin{equation*} \Vert T \Vert \leq \sqrt{ 2} \omega(T); \end{equation*} this is a considerable improvement of the classical inequality \begin{equation*} \Vert T \Vert \leq 2\omega(T). \end{equation*}
Keywords: bounded linear operator, Hilbert space, norm inequality, numerical radius.
@article{PA_2020_9_2_a5,
     author = {Mohsen Shah Hosseini and Baharak Moosavi},
     title = {Inequalities for the norm and numerical radius for {Hilbert} $C^{*}$-module operators},
     journal = {Problemy analiza},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/}
}
TY  - JOUR
AU  - Mohsen Shah Hosseini
AU  - Baharak Moosavi
TI  - Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
JO  - Problemy analiza
PY  - 2020
SP  - 87
EP  - 96
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/
LA  - en
ID  - PA_2020_9_2_a5
ER  - 
%0 Journal Article
%A Mohsen Shah Hosseini
%A Baharak Moosavi
%T Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators
%J Problemy analiza
%D 2020
%P 87-96
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/
%G en
%F PA_2020_9_2_a5
Mohsen Shah Hosseini; Baharak Moosavi. Inequalities for the norm and numerical radius for Hilbert $C^{*}$-module operators. Problemy analiza, Tome 9 (2020) no. 2, pp. 87-96. http://geodesic.mathdoc.fr/item/PA_2020_9_2_a5/