The analysis of bifurcation solutions of the Camassa--Holm equation by angular singularities
Problemy analiza, Tome 9 (2020) no. 1, pp. 66-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies bifurcation solutions of the Camassa–Holm equation by using the local Lyapunov–Schmidt method. The Camassa–Holm equation is studied by reduction to an ODE. We find the key function that corresponds to the functional related to this equation and defined on a new domain. The bifurcation analysis of the key function is investigated by the angular singularities. We find the parametric equation of the bifurcation set (caustic) with its geometric description. Also, the bifurcation spreading of the critical points is found.
Keywords: angular singularities, caustic.
Mots-clés : Camassa–Holm equation, bifurcation solutions
@article{PA_2020_9_1_a5,
     author = {H. K. Kadhim and M. A. Abdul Hussain},
     title = {The analysis of bifurcation solutions of the {Camassa--Holm} equation by angular singularities},
     journal = {Problemy analiza},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a5/}
}
TY  - JOUR
AU  - H. K. Kadhim
AU  - M. A. Abdul Hussain
TI  - The analysis of bifurcation solutions of the Camassa--Holm equation by angular singularities
JO  - Problemy analiza
PY  - 2020
SP  - 66
EP  - 82
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a5/
LA  - en
ID  - PA_2020_9_1_a5
ER  - 
%0 Journal Article
%A H. K. Kadhim
%A M. A. Abdul Hussain
%T The analysis of bifurcation solutions of the Camassa--Holm equation by angular singularities
%J Problemy analiza
%D 2020
%P 66-82
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a5/
%G en
%F PA_2020_9_1_a5
H. K. Kadhim; M. A. Abdul Hussain. The analysis of bifurcation solutions of the Camassa--Holm equation by angular singularities. Problemy analiza, Tome 9 (2020) no. 1, pp. 66-82. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a5/

[1] Abdul Hussain M. A., Corner Singularities of Smooth Functions in the Analysis of Bifurcations Balance of the Elastic Beams and Periodic Waves, PhD thesis, Voronezh Univ., Voronezh, 2005 (in Russian)

[2] Arnold V. I, Gusein-Zade S. M., Varchenko A. N., Singularities of Differential Maps, Springer, 1988 | DOI | MR

[3] Berczi G., Lectures on Singularities of Maps, Trinity Term., Oxford, 2010

[4] Darinskii B. M., Tcarev C. L., Sapronov Yu. I., “Bifurcations of Extremals of Fredholm Functionals”, J. Math. Sci., 145 (2007), 5311–5453 | DOI | MR

[5] Golubitsky M., Schaeffer D. G., Singularities and Groups in Bifurcation Theory, v. I, Applied Mathematical Sciences, 51, Springer, 1985 | DOI | MR | Zbl

[6] Li J., Qiao Z., “Bifurcation and Exact Traveling Wave Solutions for a Generalized Camassa-Holm Equation”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23:03 (2013), 1350057 | DOI | MR | Zbl

[7] Li J., Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions, Science Press, Beijing, 2013

[8] Loginov B. V., Theory of Branching Nonlinear Equations in The conditions of Invariance Group, Fan, Tashkent, 1985 | MR

[9] Sapronov Yu. I., “Regular Perturbation of Fredholm Maps and Theorem about odd Field”, Tr. Mat. Fak. Voronezh. Gos. Univ., 10 (1973), 82–88 | MR

[10] Sapronov Yu. I., “Finite Dimensional Reduction in the Smooth Extremely Problems”, Uspekhi Mat. Nauk, 51:1(307) (1996), 101–132 | DOI | MR

[11] Shveriova O. V., “Caustic and bif-spreadings for a boundary extremal with a triple degeneration along the boundary”, Tr. Mat. Fak. Voronezh. Gos. Univ., 2002, no. 7, 149–160 (in Russian)

[12] Vainberg M. M., Trenogin V. A., “Theory of Branching Solutions of Nonlinear Equations”, Bull. Amer. Math. Soc., 81 (1975), 886–889 | DOI | MR