On some inequalities for $\tau$-measurable operators
Problemy analiza, Tome 9 (2020) no. 1, pp. 52-59

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the Choi's inequality for measurable operators affiliated with a given von Neumann algebra. Some Young and Cauchy–Schwarz type inequalities for $\tau$-measurable operators are also given.
Keywords: von Neumann algebra, positive operator, noncommutative $L_p$-space, Young inequality, Cauchy–Schwarz inequality.
@article{PA_2020_9_1_a3,
     author = {S. M. Davarpanah and M. E. Omidvar and H. R. Moradi},
     title = {On some inequalities for $\tau$-measurable operators},
     journal = {Problemy analiza},
     pages = {52--59},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/}
}
TY  - JOUR
AU  - S. M. Davarpanah
AU  - M. E. Omidvar
AU  - H. R. Moradi
TI  - On some inequalities for $\tau$-measurable operators
JO  - Problemy analiza
PY  - 2020
SP  - 52
EP  - 59
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/
LA  - en
ID  - PA_2020_9_1_a3
ER  - 
%0 Journal Article
%A S. M. Davarpanah
%A M. E. Omidvar
%A H. R. Moradi
%T On some inequalities for $\tau$-measurable operators
%J Problemy analiza
%D 2020
%P 52-59
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/
%G en
%F PA_2020_9_1_a3
S. M. Davarpanah; M. E. Omidvar; H. R. Moradi. On some inequalities for $\tau$-measurable operators. Problemy analiza, Tome 9 (2020) no. 1, pp. 52-59. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/