Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_1_a3, author = {S. M. Davarpanah and M. E. Omidvar and H. R. Moradi}, title = {On some inequalities for $\tau$-measurable operators}, journal = {Problemy analiza}, pages = {52--59}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/} }
S. M. Davarpanah; M. E. Omidvar; H. R. Moradi. On some inequalities for $\tau$-measurable operators. Problemy analiza, Tome 9 (2020) no. 1, pp. 52-59. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/
[1] Audenaert K., “Interpolating between the arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities”, Oper. Matrices, 9:2 (2015), 475–479 | DOI | MR | Zbl
[2] Choi M. D., “A Schwarz inequality for positive linear maps on ${{C}^{*}}$-algebras”, Illinois J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl
[3] Dinh T. H., Tikhonov O. E., “To the theory of operator monotone and operator convex functions”, Russian Maths., 54:3 (2010), 7–11 | DOI | MR | Zbl
[4] Dinh T. H., “Some inequalities for measurable operators”, Internat. J. Math. Anal., 8:22 (2014), 1083–1087 | DOI
[5] Fack T., Kosaki H., “Generalized s-numbers of $\tau $-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl
[6] Han Y., Shao J., “Notes on two recent results of Audenaert”, Electron. J. Linear Algebra, 31 (2016), 147–155 | DOI | MR | Zbl
[7] Nelson E., “Note on noncommutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl
[8] Pisier G., Xu Q., “Noncommutative $L^p$-spaces”, Handbook of the Geometry of Banach Spaces, v. 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl
[9] Shao J., “On Young and Heinz inequalities for $\tau $-measurable operators”, J. Math. Anal. Appl., 414:1 (2014), 243–249 | DOI | MR | Zbl
[10] Shao J., Han Y., “Some convexity inequalities in noncommutative $L_p$-spaces”, J. Inequal. Appl., 2014, 385 | DOI | MR | Zbl
[11] Zhao J., Wu J., “Operator inequalities involving improved Young and its reverse inequalities”, J. Math. Anal. Appl., 421:2 (2015), 1779–1789 | DOI | MR | Zbl