On some inequalities for $\tau$-measurable operators
Problemy analiza, Tome 9 (2020) no. 1, pp. 52-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the Choi's inequality for measurable operators affiliated with a given von Neumann algebra. Some Young and Cauchy–Schwarz type inequalities for $\tau$-measurable operators are also given.
Keywords: von Neumann algebra, positive operator, noncommutative $L_p$-space, Young inequality, Cauchy–Schwarz inequality.
@article{PA_2020_9_1_a3,
     author = {S. M. Davarpanah and M. E. Omidvar and H. R. Moradi},
     title = {On some inequalities for $\tau$-measurable operators},
     journal = {Problemy analiza},
     pages = {52--59},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/}
}
TY  - JOUR
AU  - S. M. Davarpanah
AU  - M. E. Omidvar
AU  - H. R. Moradi
TI  - On some inequalities for $\tau$-measurable operators
JO  - Problemy analiza
PY  - 2020
SP  - 52
EP  - 59
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/
LA  - en
ID  - PA_2020_9_1_a3
ER  - 
%0 Journal Article
%A S. M. Davarpanah
%A M. E. Omidvar
%A H. R. Moradi
%T On some inequalities for $\tau$-measurable operators
%J Problemy analiza
%D 2020
%P 52-59
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/
%G en
%F PA_2020_9_1_a3
S. M. Davarpanah; M. E. Omidvar; H. R. Moradi. On some inequalities for $\tau$-measurable operators. Problemy analiza, Tome 9 (2020) no. 1, pp. 52-59. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a3/

[1] Audenaert K., “Interpolating between the arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities”, Oper. Matrices, 9:2 (2015), 475–479 | DOI | MR | Zbl

[2] Choi M. D., “A Schwarz inequality for positive linear maps on ${{C}^{*}}$-algebras”, Illinois J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl

[3] Dinh T. H., Tikhonov O. E., “To the theory of operator monotone and operator convex functions”, Russian Maths., 54:3 (2010), 7–11 | DOI | MR | Zbl

[4] Dinh T. H., “Some inequalities for measurable operators”, Internat. J. Math. Anal., 8:22 (2014), 1083–1087 | DOI

[5] Fack T., Kosaki H., “Generalized s-numbers of $\tau $-measurable operators”, Pacific J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl

[6] Han Y., Shao J., “Notes on two recent results of Audenaert”, Electron. J. Linear Algebra, 31 (2016), 147–155 | DOI | MR | Zbl

[7] Nelson E., “Note on noncommutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[8] Pisier G., Xu Q., “Noncommutative $L^p$-spaces”, Handbook of the Geometry of Banach Spaces, v. 2, North-Holland, Amsterdam, 2003, 1459–1517 | DOI | MR | Zbl

[9] Shao J., “On Young and Heinz inequalities for $\tau $-measurable operators”, J. Math. Anal. Appl., 414:1 (2014), 243–249 | DOI | MR | Zbl

[10] Shao J., Han Y., “Some convexity inequalities in noncommutative $L_p$-spaces”, J. Inequal. Appl., 2014, 385 | DOI | MR | Zbl

[11] Zhao J., Wu J., “Operator inequalities involving improved Young and its reverse inequalities”, J. Math. Anal. Appl., 421:2 (2015), 1779–1789 | DOI | MR | Zbl