Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2020_9_1_a2, author = {Fozi M. Dannan}, title = {Generalized {Kantorovich} constant, a new formulation and properties}, journal = {Problemy analiza}, pages = {38--51}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2020_9_1_a2/} }
Fozi M. Dannan. Generalized Kantorovich constant, a new formulation and properties. Problemy analiza, Tome 9 (2020) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/PA_2020_9_1_a2/
[1] Alpargu Gulhan, The Kantorovich inequality, with some extensions and with some statistical applications, Master of Science thesis, McGill University, 1996
[2] Baksalary J. K., Puntanen S., “Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities”, Aequationes Math., 41 (1991), 103–110 | DOI | MR | Zbl
[3] Fujii Jun I., Fujii M., Seo Y., “Bounds for interpolational path of positive operators”, Recent topics in operator inequalities, 1359 (2004), 46–57
[4] Furuta T., “Specht Ratio $S(1)$ can be expressed by Kantorovich constant $K(p):S(1)=\exp [K^{^{\prime }}(1)]$ and its applications”, Math. Inequal. Appl., 6:3 (2003), 521–530 | MR | Zbl
[5] Furuta T., “Extensions of Holder-McCarthy and Kantorovich Inequalities and Their Applications”, Proc. Japan Acad. Ser. A, 73 (1997), 38–41 | DOI | MR | Zbl
[6] Furuta T., “Basic properties of the generalized Kantorovich constant $K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}\cdot \left( \frac{ p-1}{p}\cdot \frac{h^{p}-1}{h^{p}-h}\right) ^{p}$ and its applications”, Acta Scientiarum Mathematicarum, 70:1, January (2004) | MR | Zbl
[7] Furuta T., “Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications”, Linear Algebra and its Applications, 412 (2006), 526–537 | DOI | MR | Zbl
[8] Kantorovich L. V., “Functional analysis and applied mathematics”, Uspechi Mayh. Nauk, 3 (1948), 89–185 | MR | Zbl
[9] Kluza P., Niezgoda M., “Inequalities for relative operator entropies”, Electronic Journal of Linear Algebra, 27, December (2014), 851–864 | DOI | MR | Zbl
[10] Liao W., Wu J., Zhao J., “New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant”, Taiwanese Journal of Mathematics, 19:2, April (2015), 467–479 | DOI | MR | Zbl
[11] Mond B., Pečarić J., “A matrix version of Ky Fan Generalization of the Kantorovich inequality”, Linear and Multilinear Algebra, 36 (1994), 217–221 | DOI | MR | Zbl
[12] Nasiri L., Shkalikov A. A., Shakoori M., “A note on reverses of the Young type inequalities via Kantorovich constant”, Studia Scientiarum Mathematicarum Hungarica, 55:3 (2018), 363–373 | DOI | MR | Zbl
[13] Schweitzer P., “An inequality concerning the arithmetic mean”, Math. es phys. lapok, 23 (1914), 257–261 | MR | Zbl
[14] Yang Changsen, Ren Yonghui, “Refinements and reverses of Young type Inequalities”, International Journal of Mathematical Analysis, 12:2 (2018), 53–60 | DOI | MR
[15] Zuo H., Shi G., Fujii M., “Refined inequality with Kantorovich constant”, Journal of Mathematical Inequalities, 5:4 (2011), 551–556 | DOI | MR | Zbl