Integral representations for the~Jacobi--Pi\~neiro polynomials and the~functions of the second kind
Problemy analiza, Tome 8 (2019) no. 3, pp. 83-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Hermite–Padé approximants for the Cauchy transforms of the Jacobi weights in one interval. The denominators of the approximants are known as Jacobi–Piñeiro polynomials. These polynomials, together with the functions of the second kind, satisfy a generalized hypergeometric differential equation. In the case of the two weights, we construct the basis of the solutions of this ODE with elements of different growth rate. We obtain the integral representations for the basis elements.
Keywords: functions of the second kind, integral representations, generalized hypergeometric functions.
Mots-clés : Hermite–Padé approximants, Jacobi–Piñeiro multiple orthogonal polynomials
@article{PA_2019_8_3_a7,
     author = {V. G. Lysov},
     title = {Integral representations for {the~Jacobi--Pi\~neiro} polynomials and the~functions of the second kind},
     journal = {Problemy analiza},
     pages = {83--95},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a7/}
}
TY  - JOUR
AU  - V. G. Lysov
TI  - Integral representations for the~Jacobi--Pi\~neiro polynomials and the~functions of the second kind
JO  - Problemy analiza
PY  - 2019
SP  - 83
EP  - 95
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a7/
LA  - en
ID  - PA_2019_8_3_a7
ER  - 
%0 Journal Article
%A V. G. Lysov
%T Integral representations for the~Jacobi--Pi\~neiro polynomials and the~functions of the second kind
%J Problemy analiza
%D 2019
%P 83-95
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a7/
%G en
%F PA_2019_8_3_a7
V. G. Lysov. Integral representations for the~Jacobi--Pi\~neiro polynomials and the~functions of the second kind. Problemy analiza, Tome 8 (2019) no. 3, pp. 83-95. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a7/

[1] Adler M., van Moerbeke P., Wang D., “Random matrix minor processes related to percolation theory”, Random Matrices Theory Appl., 2:4 (2013), 72 pp. | DOI | MR

[2] Aptekarev A. I., Branquinho A., Van Assche W., “Multiple Orthogonal Polynomials for Classical Weights”, Transactions of the American Mathematical Society, 355:10 (2003), 3887–3914 | DOI | MR | Zbl

[3] Van Assche W., “Mehler – Heine asymptotics for multiple orthogonal polynomials”, Proc. Amer. Math. Soc., 145:1 (2017), 303–314 | DOI | MR | Zbl

[4] Beckermann B., Coussement J., Van Assche W., “Multiple Wilson and Jacobi–Pineiro polynomials”, J. Approx. Theory, 132:2 (2005), 155–181 | DOI | MR | Zbl

[5] Gonchar A. A., Rakhmanov E. A., Sorokin V. N., “Hermite–Padé approximants for systems of Markov type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl

[6] Lysov V. G., “Asymptotics of Jacobi–Piñeiro polynomials and functions of the second kind”, Math. Notes, 103:3 (2018), 495–498 | DOI | MR | Zbl

[7] Mukhin E., Varchenko A., “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | DOI | MR | Zbl

[8] Neuschel T., Van Assche W., “Asymptotic zero distribution of Jacobi – Pineiro and multiple Laguerre polynomials”, J. Approx. Theory, 205 (2016), 114–132 | DOI | MR | Zbl

[9] Nikiforov A. F., Uvarov V. B., Special functions of mathematical physics: A unified introduction with applications, Birkhäuser, Boston, 1988 | MR | Zbl

[10] Nikishin E. M., Sorokin V. N., Rational Approximation and Orthogonality, Math. Monographs, 92, Amer. Math. Soc., Providence, RI, 1991 | MR

[11] Piñeiro Dias L. R., “On simultaneous Padé approximants for a collection of Markov functions”, Vestnik Moskov. Univ. Ser. I, 1987, no. 2, 67–70 | MR | Zbl

[12] Smet C., Van Assche W., “Mellin transforms for multiple Jacobi–Pineiro polynomials”, J. Approx. Theory, 162 (2010), 782–806 | DOI | MR | Zbl

[13] Szegö G., Orthogonal Polynomials, American Mathematical Society, 1975 | MR | Zbl