Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a6, author = {A. G. Losev and E. A. Mazepa}, title = {On solvability of the boundary value problems for harmonic function on noncompact {Riemannian} manifolds}, journal = {Problemy analiza}, pages = {73--82}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a6/} }
TY - JOUR AU - A. G. Losev AU - E. A. Mazepa TI - On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds JO - Problemy analiza PY - 2019 SP - 73 EP - 82 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a6/ LA - en ID - PA_2019_8_3_a6 ER -
A. G. Losev; E. A. Mazepa. On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds. Problemy analiza, Tome 8 (2019) no. 3, pp. 73-82. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a6/
[1] Ancona A., “Negative curved manifolds, elliptic operators, and the Martin boundary”, Ann. of Math. (2), 125:3 (1987), 495–536 | DOI | MR | Zbl
[2] Anderson M. T., “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Differential Geom., 18 (1983), 701–722 | DOI | MR | Zbl
[3] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math Wiss., 224, Springer-Verlag, Berlin–New York, 1983 | MR | Zbl
[4] Grigor'yan A., “On the existance of positive fundamental solution of the Laplace equation on Riemannian manifolds”, Mat. Sb., 128:3 (1985), 354–363 | MR | Zbl
[5] Grigor'yan A., “Analitic and geometric background of recurence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[6] Grigor'yan A., Losev A. G., “Dimension of spaces of solutions of the Schrödinger equation on noncompact Riemannian manifolds”, Mathematical physics and computer simulation, 20:3 (2017), 34–42 (in Russian) | DOI | MR
[7] Kesel'man V. M., “The concept and criteria of the capacitive type of the non-compact Riemannian manifold based on the Generalized capacity”, Mathematical physics and computer simulation, 22:2 (2019), 21–32 (in Russian) | DOI | MR
[8] Korol'kov S. A., “On the solvability of boundary value problems for the stationary Schrödinger equation in unbounded domains on Riemannian manifolds”, Differ. Equ., 51:6 (2015), 738–744 | DOI | MR | Zbl
[9] Korolkov S. A., Losev A. G., “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1–2 (2012), 459–472 | DOI | MR | Zbl
[10] Losev A. G., Mazepa E. A., “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2002), 57–73 | MR | Zbl
[11] Losev A. G., Mazepa E. A., “On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds”, Probl. Anal. Issues Anal., 7:25, Special Issue (2018), 101–112 | DOI | MR | Zbl
[12] Mazepa E. A., “Boundary value problems for stationary Schrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599 | DOI | MR | Zbl
[13] Murata M., “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Proc. Intern. Conf. (Nagoya/Japan, 1990), Potential Theory, 1992, 251–259 | MR | Zbl
[14] Murata M., “Nonnegative solutions of the heatequation on rotationally symmetric Riemannian manifolds and semismall perturbations”, Rev. Mat. Iberoam., 27:3 (2011), 885–907 | DOI | MR | Zbl
[15] Sario L., Nakai M., Wang C., Chang L. O., Classification theory of Riemannian manifolds, Lecture Notes in Math., 605, Springer, Cham, 1977 | DOI | MR | Zbl
[16] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manifold”, J. Differential Geom., 18 (1983), 723–732 | DOI | MR | Zbl