The limiting amplitude principle for the nonlinear Lamb system
Problemy analiza, Tome 8 (2019) no. 3, pp. 45-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system consisting of an infinite string coupled to a nonlinear oscillator is considered. For the system, the Cauchy problem with the periodic initial data is studied. The main goal is to prove the convergence of the solutions as $t\to\infty$ to time periodic solutions.
Keywords: the nonlinear Lamb system, the Cauchy problem, periodic initial data, the limiting amplitude principle.
@article{PA_2019_8_3_a4,
     author = {T. V. Dudnikova},
     title = {The limiting amplitude principle for the nonlinear {Lamb} system},
     journal = {Problemy analiza},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - The limiting amplitude principle for the nonlinear Lamb system
JO  - Problemy analiza
PY  - 2019
SP  - 45
EP  - 62
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/
LA  - en
ID  - PA_2019_8_3_a4
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T The limiting amplitude principle for the nonlinear Lamb system
%J Problemy analiza
%D 2019
%P 45-62
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/
%G en
%F PA_2019_8_3_a4
T. V. Dudnikova. The limiting amplitude principle for the nonlinear Lamb system. Problemy analiza, Tome 8 (2019) no. 3, pp. 45-62. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/

[1] Cartwright M. L., “Forced oscillations in nonlinear systems”, Contributions to the Theory of Non-Linear Oscillations, v. I, Annals of Mathematics Studies, 20, ed. S. Lefshetz, Princeton University Press, 1950, 149–241 | MR

[2] Cartwright M. L., Littlewood J. E., “On non-linear differential equations of the second order: II. The equation $\ddot y+kf(y)\dot y+g(y,k)=p(t)=p_1(t)+kp_2(t)$; $k>0$, $f(y)\geq1$”, Ann. of Math., Second Series, 48:2 (1947), 472–494 | DOI | MR | Zbl

[3] Dudnikova T. V., “On the limiting amplitude principle for the one-dimensional nonlinear wave equations”, Mathematical education, 2015, no. 4(76), 53–58 (in Russian)

[4] Hagerty P., Bloch A. M., Weinstein M. I., “Radiation induced instability”, SIAM J. Appl. Math., 64 (2003), 484–524 | DOI | MR | Zbl

[5] Komech A. I., “On stabilization of string-nonlinear oscillator interaction”, J. Math. Anal. Appl., 196 (1995), 384–409 | DOI | MR | Zbl

[6] Komech A. I., “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst. Ser. A, 36:11 (2016), 6201–6256 | DOI | MR | Zbl

[7] Lamb H., “On a peculiarity of the wave–system due to the free vibrations of a nucleus in an extended medium”, Proc. Lond. Math. Soc., s1–32:1 (1900), 208–211 | DOI | MR | Zbl

[8] Lefschetz S., Differential Equations: Geometric Theory, Interscience Publishers, Inc., New York, 1957 | MR | Zbl

[9] Levinson N., “On the existence of periodic solutions for second order differential equation with a forcing term”, J. Math. Phys., 22 (1943), 41–48 | DOI | MR | Zbl

[10] Liénard A., “Étude des oscillations entretenues”, Revue générale de l'Electricité, 23 (1928), 901–912; 946–954

[11] Loud W. S., “On periodic solutions of Duffing's equation with damping”, J. Math. Phys., 34 (1955), 173–178 | DOI | MR | Zbl

[12] Loud W. S., “Boundedness and convergence of solutions of $x''+cx'+g(x)=e(t)$”, Duke Math. J., 24:1 (1957), 63–72 | DOI | MR | Zbl

[13] Olver P. J., Sheils N. E., “Dispersive Lamb systems”, J. Geom. Mech., 11:2 (2019), 239–254 | DOI | MR

[14] Nonlocal Problems of the Theory Oscillations, Academic Press, New York, 1966 | MR | Zbl

[15] Pliss V. A., Integral Sets of Periodic Systems of Differential Equations, Nauka, M., 1977 (in Russian) | MR | Zbl

[16] Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Roma, 1963 | MR | MR

[17] Reuter G. E. H., “Boundedness theorems for non-linear differential equations of the second order (II)”, J. Lond. Math. Soc., s1–27:1 (1952), 48–58 | DOI | MR | Zbl

[18] Sansone G., Conti R., Non-Linear Differential Equations, Macmillan, New York, 1964 | MR

[19] Shiraiwa K., “Boundedness and convergence of solutions of Duffing's equation”, Nagoya Math. J., 66 (1977), 151–166 | DOI | MR | Zbl

[20] Zlámal M., “Über die Stabilität der nichtlinearen erzwungenen Schwingungen”, Czechoslovak Math. J., 4:1 (1954), 95–103 (in German) | DOI | MR | Zbl