Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a4, author = {T. V. Dudnikova}, title = {The limiting amplitude principle for the nonlinear {Lamb} system}, journal = {Problemy analiza}, pages = {45--62}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/} }
T. V. Dudnikova. The limiting amplitude principle for the nonlinear Lamb system. Problemy analiza, Tome 8 (2019) no. 3, pp. 45-62. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a4/
[1] Cartwright M. L., “Forced oscillations in nonlinear systems”, Contributions to the Theory of Non-Linear Oscillations, v. I, Annals of Mathematics Studies, 20, ed. S. Lefshetz, Princeton University Press, 1950, 149–241 | MR
[2] Cartwright M. L., Littlewood J. E., “On non-linear differential equations of the second order: II. The equation $\ddot y+kf(y)\dot y+g(y,k)=p(t)=p_1(t)+kp_2(t)$; $k>0$, $f(y)\geq1$”, Ann. of Math., Second Series, 48:2 (1947), 472–494 | DOI | MR | Zbl
[3] Dudnikova T. V., “On the limiting amplitude principle for the one-dimensional nonlinear wave equations”, Mathematical education, 2015, no. 4(76), 53–58 (in Russian)
[4] Hagerty P., Bloch A. M., Weinstein M. I., “Radiation induced instability”, SIAM J. Appl. Math., 64 (2003), 484–524 | DOI | MR | Zbl
[5] Komech A. I., “On stabilization of string-nonlinear oscillator interaction”, J. Math. Anal. Appl., 196 (1995), 384–409 | DOI | MR | Zbl
[6] Komech A. I., “Attractors of Hamilton nonlinear PDEs”, Discrete Contin. Dyn. Syst. Ser. A, 36:11 (2016), 6201–6256 | DOI | MR | Zbl
[7] Lamb H., “On a peculiarity of the wave–system due to the free vibrations of a nucleus in an extended medium”, Proc. Lond. Math. Soc., s1–32:1 (1900), 208–211 | DOI | MR | Zbl
[8] Lefschetz S., Differential Equations: Geometric Theory, Interscience Publishers, Inc., New York, 1957 | MR | Zbl
[9] Levinson N., “On the existence of periodic solutions for second order differential equation with a forcing term”, J. Math. Phys., 22 (1943), 41–48 | DOI | MR | Zbl
[10] Liénard A., “Étude des oscillations entretenues”, Revue générale de l'Electricité, 23 (1928), 901–912; 946–954
[11] Loud W. S., “On periodic solutions of Duffing's equation with damping”, J. Math. Phys., 34 (1955), 173–178 | DOI | MR | Zbl
[12] Loud W. S., “Boundedness and convergence of solutions of $x''+cx'+g(x)=e(t)$”, Duke Math. J., 24:1 (1957), 63–72 | DOI | MR | Zbl
[13] Olver P. J., Sheils N. E., “Dispersive Lamb systems”, J. Geom. Mech., 11:2 (2019), 239–254 | DOI | MR
[14] Nonlocal Problems of the Theory Oscillations, Academic Press, New York, 1966 | MR | Zbl
[15] Pliss V. A., Integral Sets of Periodic Systems of Differential Equations, Nauka, M., 1977 (in Russian) | MR | Zbl
[16] Qualitative Theorie Nichtlinearer Differentialgleichungen, Edizioni Cremonese, Roma, 1963 | MR | MR
[17] Reuter G. E. H., “Boundedness theorems for non-linear differential equations of the second order (II)”, J. Lond. Math. Soc., s1–27:1 (1952), 48–58 | DOI | MR | Zbl
[18] Sansone G., Conti R., Non-Linear Differential Equations, Macmillan, New York, 1964 | MR
[19] Shiraiwa K., “Boundedness and convergence of solutions of Duffing's equation”, Nagoya Math. J., 66 (1977), 151–166 | DOI | MR | Zbl
[20] Zlámal M., “Über die Stabilität der nichtlinearen erzwungenen Schwingungen”, Czechoslovak Math. J., 4:1 (1954), 95–103 (in German) | DOI | MR | Zbl