Green energy and extremal decompositions
Problemy analiza, Tome 8 (2019) no. 3, pp. 38-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give two precise estimates for the Green energy of a discrete charge, concentrated in an even number of points on the circle, with respect to the concentric ring. The lower estimate for the Green energy is attained for the points with a nonstandard symmetry. The well-known Pólya-Schur inequality for the logarithmic energy is a special case of this estimate. The proof is based on the application of dissymmetrization and an asymptotic formula for the conformal capacity of a generalized condenser in the case when some of its plates contract to given points. The upper bound is established for a charge that takes values of opposite signs. Its proof reduces to solving a problem on the so-called extremal decomposition of a circular ring with free poles on a circle.
Keywords: Green energy, discrete charge, dissymmetrization, extremal decompositions.
@article{PA_2019_8_3_a3,
     author = {V. N. Dubinin},
     title = {Green energy and extremal decompositions},
     journal = {Problemy analiza},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Green energy and extremal decompositions
JO  - Problemy analiza
PY  - 2019
SP  - 38
EP  - 44
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a3/
LA  - en
ID  - PA_2019_8_3_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Green energy and extremal decompositions
%J Problemy analiza
%D 2019
%P 38-44
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a3/
%G en
%F PA_2019_8_3_a3
V. N. Dubinin. Green energy and extremal decompositions. Problemy analiza, Tome 8 (2019) no. 3, pp. 38-44. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a3/

[1] Beltran C., Corral N., Criado del Rey J. G., “Discrete and continuous Green energy on compact manifolds”, Journal of Approximation Theory, 237 (2019), 160–185 | DOI | MR | Zbl

[2] Brauchart J. S., “Optimal logarithmic energy points on the unit sphere”, Math. Comp., 77:263 (2008), 1599–1613 | DOI | MR | Zbl

[3] Brauchart J. S., Hardin D. P., Saff E. B., “The Riesz energy of the Nth roots of unity: an asymptotic expansion for large $N$”, Bulletin of the London Mathematical Society, 41:4 (2009), 621–633 | DOI | MR | Zbl

[4] Brauchart J. S., Hardin D. P., Saff E. B., “The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere”, Contemp. Math., 578, 2012, 31–61 | DOI | MR | Zbl

[5] Criado del Rey J. G., On the separation distance of minimal Green energy points on compact Riemannian manifolds, 2019, arXiv: 1901.00779

[6] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014, xii+344 pp. | DOI | MR | Zbl

[7] Dubinin V. N., Kovalev L. V., “The reduced modulus of the complex sphere”, J. Math. Sci. (New York), 105:4 (2001), 2165–2179 | DOI | MR | Zbl

[8] Dubinin V. N., “On the product of inner radii of “partially disjoint” domains”, Questions of the Metric Theory of Mappings and Its Application, Naukova Dumka, Kiev, 1978, 24–31 (in Russian) | MR

[9] Erdélyi T., Hardin D. P., Saff E. B., “Inverse Bernstein inequalities and min-max-min problems on the unit circle”, Mathematika, 61:03 (2015), 581–590 | DOI | MR | Zbl

[10] Hardin D. P., Kendall A. P., Saff E. B., “Polarization optimality of equally spaced points on the circle for discrete potentials”, Discrete Computational Geometry, 50:1 (2013), 236–243 | DOI | MR | Zbl

[11] Kuz'mina G. V., “Methods of geometric function theory, I, II”, St. Petersbg. Math. J., 9:3 (1997), 455–507 ; 5, 889–930 | MR | Zbl | Zbl

[12] López-García A., Wagner D. A., “Asymptotics of the Energy of Sections of Greedy Energy Sequences on the Unit Circle, and Some Conjectures for General Sequences”, Comput. Methods Funct. Theory, 15:4 (2015), 721–750 | DOI | MR | Zbl

[13] Lebedev N. A., The area principle in the theory of univalent functions, Nauka, M., 1975 (in Russian) | MR | Zbl

[14] Marcus M., “Radial averaging of domains, estimates for Dirichlet integrals and applications”, J. Anal. Math., 27 (1974), 47–78 | DOI | MR | Zbl