Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
Problemy analiza, Tome 8 (2019) no. 3, pp. 24-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of $\mathfrak{O}_{\varepsilon}$-classical orthogonal polynomials, where $\mathfrak{O}_{\varepsilon}:=\mathbb{I}+\varepsilon D$ ($\varepsilon\neq0$). It is shown that the scaled Laguerre polynomial sequence $\{a^{-n}L^{(\alpha)}_n(ax)\}_{n\geq0}$, where $a=-\varepsilon^{-1}$, is actually the only $\mathfrak{O}_{\varepsilon}$-classical sequence. As an illustration, we deal with some representations of Laguerre polynomials $L^{(0)}_n(x)$ in terms of the action of linear differential operators on the Laguerre polynomials $L^{(m)}_n(x)$. The inverse connection problem of expanding Laguerre polynomials $L^{(m)}_n(x)$ in terms of $L^{(0)}_n(x)$ is also considered. Furthermore, some connection formulas between the monomial basis $\{x^n\}_{n\geq0}$ and the shifted Laguerre basis $\{L^{(m)}_n(x+1)\}_{n\geq0}$ are deduced.
Keywords: classical polynomials, lowering and raising operators, higher order differential operators, connection formulas.
Mots-clés : Laguerre polynomials, structure relations
@article{PA_2019_8_3_a2,
     author = {B. Aloui and L. Kh\'eriji},
     title = {Connection formulas and representations of {Laguerre} polynomials in terms of the action of linear differential operators},
     journal = {Problemy analiza},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/}
}
TY  - JOUR
AU  - B. Aloui
AU  - L. Khériji
TI  - Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
JO  - Problemy analiza
PY  - 2019
SP  - 24
EP  - 37
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/
LA  - en
ID  - PA_2019_8_3_a2
ER  - 
%0 Journal Article
%A B. Aloui
%A L. Khériji
%T Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
%J Problemy analiza
%D 2019
%P 24-37
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/
%G en
%F PA_2019_8_3_a2
B. Aloui; L. Khériji. Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators. Problemy analiza, Tome 8 (2019) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/