Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
Problemy analiza, Tome 8 (2019) no. 3, pp. 24-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of $\mathfrak{O}_{\varepsilon}$-classical orthogonal polynomials, where $\mathfrak{O}_{\varepsilon}:=\mathbb{I}+\varepsilon D$ ($\varepsilon\neq0$). It is shown that the scaled Laguerre polynomial sequence $\{a^{-n}L^{(\alpha)}_n(ax)\}_{n\geq0}$, where $a=-\varepsilon^{-1}$, is actually the only $\mathfrak{O}_{\varepsilon}$-classical sequence. As an illustration, we deal with some representations of Laguerre polynomials $L^{(0)}_n(x)$ in terms of the action of linear differential operators on the Laguerre polynomials $L^{(m)}_n(x)$. The inverse connection problem of expanding Laguerre polynomials $L^{(m)}_n(x)$ in terms of $L^{(0)}_n(x)$ is also considered. Furthermore, some connection formulas between the monomial basis $\{x^n\}_{n\geq0}$ and the shifted Laguerre basis $\{L^{(m)}_n(x+1)\}_{n\geq0}$ are deduced.
Keywords: classical polynomials, lowering and raising operators, higher order differential operators, connection formulas.
Mots-clés : Laguerre polynomials, structure relations
@article{PA_2019_8_3_a2,
     author = {B. Aloui and L. Kh\'eriji},
     title = {Connection formulas and representations of {Laguerre} polynomials in terms of the action of linear differential operators},
     journal = {Problemy analiza},
     pages = {24--37},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/}
}
TY  - JOUR
AU  - B. Aloui
AU  - L. Khériji
TI  - Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
JO  - Problemy analiza
PY  - 2019
SP  - 24
EP  - 37
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/
LA  - en
ID  - PA_2019_8_3_a2
ER  - 
%0 Journal Article
%A B. Aloui
%A L. Khériji
%T Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators
%J Problemy analiza
%D 2019
%P 24-37
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/
%G en
%F PA_2019_8_3_a2
B. Aloui; L. Khériji. Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators. Problemy analiza, Tome 8 (2019) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/

[1] Aloui B., Marcellán F., Sfaxi R., “Classical orthogonal polynomials with respect to a lowering operator generalizing the Laguerre operator”, Integral Transforms Spec. Funct., 2013, no. 24, 636–648 | DOI | MR | Zbl

[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator”, Ramanujan J., 2018, no. 45, 475–481 | DOI | MR | Zbl

[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period. Math. Hung., 2018, no. 76, 126–132 | DOI | MR | Zbl

[4] Aloui B., “Hermite polynomials and Hahn's theorem with respect to the raising operator”, Electr. J. Math. Anal. Appl., 6:2 (2018), 157–162 http://math-frac.org/Journals/EJMAA/Vol6(2)_July_2018/Vol6(2)_Papers/12_EJMAA_Vol6(2)_July_2018_pp_157-162.pdf | MR | Zbl

[5] Al-Salam W. A., “Characterization theorems for orthogonal polynomials”, Orthogonal polynomials: theory and practice, NATO ASI Series C, 294, Kluwer, 1990, 1–24 | MR

[6] Area I., Godoy A., Ronveaux A., Zarzo A., “Classical symmetric orthogonal polynomials of a discrete variable”, Integral Transforms Spec. Funct., 15 (2004), 1–12 | DOI | MR | Zbl

[7] Askey R., “Divided difference operators and classical orthogonal polynomials”, Rocky Mountain J. Math., 19 (1989), 33–37 | DOI | MR | Zbl

[8] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl

[9] Bochner S., “Über Sturm-Liouvillesche Polynomsysteme”, Z. Math., 29 (1929), 730–736 | DOI | MR | Zbl

[10] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl

[11] Dattoli G., Ricci P. E., “Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions”, Georgian Math. J., 10 (2003), 481–494 | MR | Zbl

[12] Hahn W., “Über die Jacobischen polynome und zwei verwandte polynomklassen”, Math. Z., 39 (1935), 634–638 | DOI | MR

[13] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nach., 2 (1949), 4–34 | DOI | MR | Zbl

[14] Hochstadt H., The Functions of Mathematical Physics, Dover Publications Inc., New York, 1971 | MR

[15] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR

[16] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report, No 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, 1998

[17] Lebedev N. N., Special functions and their applications, Translated and Edited by Richard Silverman, Revised English Edition, 1965 ; Dover Publications, New York, 1972 | MR | Zbl | Zbl

[18] Lesky P., “Über polynomsysteme, die Sturm-Liouvilleschen differenzengleichungen genügen”, Math. Zeit., 78 (1962), 439–445 | DOI | MR | Zbl

[19] Loureiro A. F., Maroni P., “Quadratic decomposition of Appell sequences”, Expo. Math., 26 (2008), 177–186 | DOI | MR | Zbl

[20] Maroni P., “Fonctions Eulériennes, Polynômes Orthogonaux Classiques”, Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales), A 154, Paris, 1994, 1–30

[21] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications, IMACS Ann. Comput. Appl. Math., 9, eds. C. Brezinski et al., 1991, 95–130 | MR | Zbl

[22] Maroni P., “Variations autour des polynômes orthogonaux classiques”, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 209–212 | MR | Zbl

[23] Nikoforov A. F., Ouvarov V. B., Special Functions of Mathematical Physics, Birkhäuser, Basel–Boston, 1988 | MR

[24] Sonine N. J., “On the approximate computation of definite integrals and on the entire functions occurring there”, Warsch. Univ. Izv., 18 (1887), 1–76

[25] Szegö G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl

[26] Tincu I., “Some properties from Laguerre polynomials”, Gen. Math., 18:1 (2010), 131–137 | MR | Zbl