Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a2, author = {B. Aloui and L. Kh\'eriji}, title = {Connection formulas and representations of {Laguerre} polynomials in terms of the action of linear differential operators}, journal = {Problemy analiza}, pages = {24--37}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/} }
TY - JOUR AU - B. Aloui AU - L. Khériji TI - Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators JO - Problemy analiza PY - 2019 SP - 24 EP - 37 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/ LA - en ID - PA_2019_8_3_a2 ER -
%0 Journal Article %A B. Aloui %A L. Khériji %T Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators %J Problemy analiza %D 2019 %P 24-37 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/ %G en %F PA_2019_8_3_a2
B. Aloui; L. Khériji. Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators. Problemy analiza, Tome 8 (2019) no. 3, pp. 24-37. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a2/
[1] Aloui B., Marcellán F., Sfaxi R., “Classical orthogonal polynomials with respect to a lowering operator generalizing the Laguerre operator”, Integral Transforms Spec. Funct., 2013, no. 24, 636–648 | DOI | MR | Zbl
[2] Aloui B., “Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator”, Ramanujan J., 2018, no. 45, 475–481 | DOI | MR | Zbl
[3] Aloui B., “Chebyshev polynomials of the second kind via raising operator preserving the orthogonality”, Period. Math. Hung., 2018, no. 76, 126–132 | DOI | MR | Zbl
[4] Aloui B., “Hermite polynomials and Hahn's theorem with respect to the raising operator”, Electr. J. Math. Anal. Appl., 6:2 (2018), 157–162 http://math-frac.org/Journals/EJMAA/Vol6(2)_July_2018/Vol6(2)_Papers/12_EJMAA_Vol6(2)_July_2018_pp_157-162.pdf | MR | Zbl
[5] Al-Salam W. A., “Characterization theorems for orthogonal polynomials”, Orthogonal polynomials: theory and practice, NATO ASI Series C, 294, Kluwer, 1990, 1–24 | MR
[6] Area I., Godoy A., Ronveaux A., Zarzo A., “Classical symmetric orthogonal polynomials of a discrete variable”, Integral Transforms Spec. Funct., 15 (2004), 1–12 | DOI | MR | Zbl
[7] Askey R., “Divided difference operators and classical orthogonal polynomials”, Rocky Mountain J. Math., 19 (1989), 33–37 | DOI | MR | Zbl
[8] Ben Cheikh Y., Gaied M., “Characterization of the Dunkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl
[9] Bochner S., “Über Sturm-Liouvillesche Polynomsysteme”, Z. Math., 29 (1929), 730–736 | DOI | MR | Zbl
[10] Chihara T. S., An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978 | MR | Zbl
[11] Dattoli G., Ricci P. E., “Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions”, Georgian Math. J., 10 (2003), 481–494 | MR | Zbl
[12] Hahn W., “Über die Jacobischen polynome und zwei verwandte polynomklassen”, Math. Z., 39 (1935), 634–638 | DOI | MR
[13] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nach., 2 (1949), 4–34 | DOI | MR | Zbl
[14] Hochstadt H., The Functions of Mathematical Physics, Dover Publications Inc., New York, 1971 | MR
[15] Khériji L., Maroni P., “The $H_q$-classical orthogonal polynomials”, Acta. Appl. Math., 71 (2002), 49–115 | DOI | MR
[16] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report, No 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, 1998
[17] Lebedev N. N., Special functions and their applications, Translated and Edited by Richard Silverman, Revised English Edition, 1965 ; Dover Publications, New York, 1972 | MR | Zbl | Zbl
[18] Lesky P., “Über polynomsysteme, die Sturm-Liouvilleschen differenzengleichungen genügen”, Math. Zeit., 78 (1962), 439–445 | DOI | MR | Zbl
[19] Loureiro A. F., Maroni P., “Quadratic decomposition of Appell sequences”, Expo. Math., 26 (2008), 177–186 | DOI | MR | Zbl
[20] Maroni P., “Fonctions Eulériennes, Polynômes Orthogonaux Classiques”, Techniques de l'Ingénieur, Traité Généralités (Sciences Fondamentales), A 154, Paris, 1994, 1–30
[21] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications, IMACS Ann. Comput. Appl. Math., 9, eds. C. Brezinski et al., 1991, 95–130 | MR | Zbl
[22] Maroni P., “Variations autour des polynômes orthogonaux classiques”, C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 209–212 | MR | Zbl
[23] Nikoforov A. F., Ouvarov V. B., Special Functions of Mathematical Physics, Birkhäuser, Basel–Boston, 1988 | MR
[24] Sonine N. J., “On the approximate computation of definite integrals and on the entire functions occurring there”, Warsch. Univ. Izv., 18 (1887), 1–76
[25] Szegö G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl
[26] Tincu I., “Some properties from Laguerre polynomials”, Gen. Math., 18:1 (2010), 131–137 | MR | Zbl