On the convergence of the least square method in case of non-uniform grids
Problemy analiza, Tome 8 (2019) no. 3, pp. 166-186

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(t)$ be a continuous on $[-1, 1]$ function, which values are given at the points of arbitrary non-uniform grid $\Omega_N= \{ t_j \}_{j=0}^{N-1}$, where nodes $t_j$ satisfy the only condition $\eta_{j}\!\leq \!t_{j}\!\leq\!\eta_{j+1},$ $0\leq j \leq N-1,$ and nodes $\eta_{j}$ are such that $-1=\eta_{0}\eta_{1}\eta_{2}\cdots\eta_{N-1}\eta_{N}=1$. We investigate approximative properties of the finite Fourier series for $f(t)$ by algebraic polynomials $\hat{P}_{n,\,N}(t)$, that are orthogonal on $\Omega_N = \{ t_j \}_{j=0}^{N-1}$. Lebesgue-type inequalities for the partial Fourier sums by $\hat{P}_{n,\,N}(t)$ are obtained.
Keywords: random net, non-uniform grid, least square method, Fourier series, function approximation.
Mots-clés : orthogonal polynomials, Legendre polynomials
@article{PA_2019_8_3_a15,
     author = {M. S. Sultanakhmedov},
     title = {On the convergence of the least square method in case of non-uniform grids},
     journal = {Problemy analiza},
     pages = {166--186},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - On the convergence of the least square method in case of non-uniform grids
JO  - Problemy analiza
PY  - 2019
SP  - 166
EP  - 186
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/
LA  - en
ID  - PA_2019_8_3_a15
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T On the convergence of the least square method in case of non-uniform grids
%J Problemy analiza
%D 2019
%P 166-186
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/
%G en
%F PA_2019_8_3_a15
M. S. Sultanakhmedov. On the convergence of the least square method in case of non-uniform grids. Problemy analiza, Tome 8 (2019) no. 3, pp. 166-186. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/