On the convergence of the least square method in case of non-uniform grids
Problemy analiza, Tome 8 (2019) no. 3, pp. 166-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(t)$ be a continuous on $[-1, 1]$ function, which values are given at the points of arbitrary non-uniform grid $\Omega_N= \{ t_j \}_{j=0}^{N-1}$, where nodes $t_j$ satisfy the only condition $\eta_{j}\!\leq \!t_{j}\!\leq\!\eta_{j+1},$ $0\leq j \leq N-1,$ and nodes $\eta_{j}$ are such that $-1=\eta_{0}\eta_{1}\eta_{2}\cdots\eta_{N-1}\eta_{N}=1$. We investigate approximative properties of the finite Fourier series for $f(t)$ by algebraic polynomials $\hat{P}_{n,\,N}(t)$, that are orthogonal on $\Omega_N = \{ t_j \}_{j=0}^{N-1}$. Lebesgue-type inequalities for the partial Fourier sums by $\hat{P}_{n,\,N}(t)$ are obtained.
Keywords: random net, non-uniform grid, least square method, Fourier series, function approximation.
Mots-clés : orthogonal polynomials, Legendre polynomials
@article{PA_2019_8_3_a15,
     author = {M. S. Sultanakhmedov},
     title = {On the convergence of the least square method in case of non-uniform grids},
     journal = {Problemy analiza},
     pages = {166--186},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
TI  - On the convergence of the least square method in case of non-uniform grids
JO  - Problemy analiza
PY  - 2019
SP  - 166
EP  - 186
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/
LA  - en
ID  - PA_2019_8_3_a15
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%T On the convergence of the least square method in case of non-uniform grids
%J Problemy analiza
%D 2019
%P 166-186
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/
%G en
%F PA_2019_8_3_a15
M. S. Sultanakhmedov. On the convergence of the least square method in case of non-uniform grids. Problemy analiza, Tome 8 (2019) no. 3, pp. 166-186. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a15/

[1] Sharapudinov I. I., “Convergence of the method of least squares”, Math. Notes, 53:3 (1993), 335–344 | DOI | MR | Zbl

[2] Nurmagomedov A. A., “Mnogochleny, ortogonal'niye na neravnomernih setkah (Polynomials, orthogonal on non-uniform grids)”, Izv. Sarat. Univ. (N. S.) Ser. Mat. Mekh. Inform., 11:3-2 (2011), 29–42 (in Russian) | DOI

[3] Nurmagomedov A. A., “Convergence of Fourier sums in polynomials orthogonal on arbitrary grids”, Russian Math. (Iz. VUZ), 56:7 (2012), 52–54 (in Russian) | DOI | MR | Zbl

[4] Szego G., Orthogonal Polynomials, AMS Colloq. Publ., 23, 1939 | DOI | MR

[5] Bari N. K., “Obobsheniye neravenstv S. N. Bernshteina i A.A. Markova (Generalization of inequalities of S.N. Bernshtein and A. A. Markov)”, Izv. AS USSR. Ser. matem., 18:2 (1954), 159–176 (in Russian) | MR | Zbl

[6] Konyagin S. V., “Markov's inequality for polynomials in the metric of $L$”, Proc. Steklov Inst. Math., 145 (1981), 129–138 | MR | Zbl

[7] Sharapudinov I. I., “Mixed series by classical orthogonal polynomials”, Daghestan Electronic Mathematical Reports, 3 (2015), 1–254 (in Russian) | DOI

[8] Sharapudinov I. I., “Asimptotika polinomov, ortogonal'nykh na setkakh iz edinichnoi okruzhnosti i chislovoi priamoi (Asymptotics of polynomials, orthogonal on nets from unite circle and number line)”, Sovremennye problemy matematiki, mekhaniki, informatiki (Modern problems of mathematics, mechanics, informatics), Materials of the international scientific conference (Tula, November, 23–27), 2009, 100–106 (in Russian)

[9] Sharapudinov I. I., “Nekotorye svoistva polinomov, ortogonal'nykh na neravnomernykh setkakh iz edinichnoi okruzhnosti i otrezka (On some properties of polynomials orthogonal on non-uniform grids from unite circle and number line)”, Sovremennye problemy teorii funktsii i ikh prilozheniia (Modern problems of function theory and its applications), Materials of the international scientific conference “15-th Saratov winter school, dedicated to the 125th anniversary of V. V. Golubev and 100th anniversary of SGU” (Saratov, January, 28 – February, 3), 2010, 187 (in Russian)

[10] Sharapudinov I. I., “Asimptoticheskie svoistva polinomov, ortogonal'nykh na konechnykh setkakh edinichnoi okruzhnosti (Asymptotic properties of the polynomials orthogonal on the finite nets of the unite circle)”, Herald of Daghestan Scientific Center of RAS, 42 (2011), 5–14 (in Russian)

[11] Nurmagomedov A. A., “Ob asimptotike mnogochlenov, ortogonal'nykh na proizvol'nykh setkakh (About approximation polynomials, orthogonal on random grids)”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 8:1 (2008), 25–31 (in Russian) | DOI

[12] Nurmagomedov A. A., “Asimptoticheskie svoistva mnogochlenov $\hat{p}_{n}^{\alpha,\beta}(x)$, ortogonal'nykh na proizvol'nykh setkakh v sluchae tselykh $\alpha$ and $\beta$ (Asymptotic properties of polynomials $\hat{p}_{n}^{\alpha,\beta}(x)$, orthogonal on any sets in the case of integers $\alpha$ and $\beta$)”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 10:2 (2010), 10–19 (in Russian) | DOI | MR

[13] Sultanakhmedov M. S., “Asimptoticheskie svoistva i vesoviye otsenki polinomov, ortogonal'nykh na neravnomernoy setke s vesom Yakobi (Asymptotic Properties and Weighted Estimation of Polynomials, Orthogonal on the Nonuniform Grids with Jacobi Weight)”, Izv. Sarat. Univ. (N.S.) Ser. Mat. Mekh. Inform., 14:1 (2014), 38–46 (in Russian) | DOI | MR

[14] Alexits G., Konvergenzprobleme der Orthogonalreihen (Convergence problems of orthogonal series), Veb Deutscher Verlag der Wissenschaften, Berlin, 1960 | DOI | MR

[15] Chebyshev P. L., Polnoe sobraniye sochineniy (Full composition of writings), v. 2–3, Izd-vo AN SSSR, M., 1947–1951 (in Russian) | MR