Further results on Jensen-type inequalities
Problemy analiza, Tome 8 (2019) no. 3, pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish some Jensen-type inequalities for continuous functions of self-adjoint operators on complex Hilbert spaces. Furthermore, using the Cartesian decomposition of an operator, we improve the known result due to Mond and Pečarić. Some refinements of the Hölder–McCarthy inequality are given as well.
Keywords: Jensen's inequality, convex function, synchronous (asynchronous) function, self-adjoint operator.
@article{PA_2019_8_3_a10,
     author = {B. Moosavi and H. R. Moradi and M. Shah Hosseini},
     title = {Further results on {Jensen-type} inequalities},
     journal = {Problemy analiza},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/}
}
TY  - JOUR
AU  - B. Moosavi
AU  - H. R. Moradi
AU  - M. Shah Hosseini
TI  - Further results on Jensen-type inequalities
JO  - Problemy analiza
PY  - 2019
SP  - 112
EP  - 124
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/
LA  - en
ID  - PA_2019_8_3_a10
ER  - 
%0 Journal Article
%A B. Moosavi
%A H. R. Moradi
%A M. Shah Hosseini
%T Further results on Jensen-type inequalities
%J Problemy analiza
%D 2019
%P 112-124
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/
%G en
%F PA_2019_8_3_a10
B. Moosavi; H. R. Moradi; M. Shah Hosseini. Further results on Jensen-type inequalities. Problemy analiza, Tome 8 (2019) no. 3, pp. 112-124. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/

[1] Bourin J.-C., “Some inequalities for norms on matrices and operators”, Linear Algebra Appl., 292 (1999), 139–154 | DOI | MR | Zbl

[2] Choi M. D., “A Schwarz inequality for positive linear maps on $C^*$–algebras”, Illinois J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl

[3] Davis C., “A Schwarz inequality for convex operator functions”, Proc. Amer. Math. Soc., 8 (1957), 42–44 | DOI | MR | Zbl

[4] Dragomir S. S., “A weakened version of Davis–Choi–Jensen's inequality for normalised positive linear maps”, Proyecciones, 36:1 (2017), 81–94 | DOI | MR | Zbl

[5] Dragomir S. S., “Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces”, Linear Multilinear Algebra, 58:7 (2010), 805–814 | DOI | MR | Zbl

[6] Fujii J.-I., “A trace inequality arising from quantum information theory”, Linear Algebra Appl., 400 (2005), 141–146 | DOI | MR | Zbl

[7] Hansen F., Pečarić J., Perić I., “Jensen's operator inequality and it's converses”, Math. Scand., 100:1 (2007), 61–73 | DOI | MR | Zbl

[8] Horváth L., Khan K. A., Pečarić J., “Cyclic refinements of the different versions of operator Jensen's inequality”, Electron. J. Linear Algebra, 31 (2016), 125–133 | DOI | MR | Zbl

[9] Mićić J., Moradi H. R., Furuichi S., “Choi–Davis–Jensen's inequality without convexity”, J. Math. Inequal., 12:4 (2018), 1075–1085 | DOI | MR | Zbl

[10] Mićić J., Pečarić J., “Some mappings related to Levinson's inequality for Hilbert space operators”, Filomat., 31:7 (2017), 1995–2009 | DOI | MR

[11] Mond B., Pečarić J., “On Jensen's inequality for operator convex functions”, Houston J. Math., 21 (1995), 739–754 | MR | Zbl

[12] Moradi H. R., Furuichi S., Mitroi F. C., Naseri R., “An extension of Jensen's operator inequality and its application to Young inequality”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113:2 (2019), 605–614 | DOI | MR | Zbl

[13] Moradi H. R., Omidvar M. E., Adil Khan M., Nikodem K., “Around Jensen's inequality for strongly convex functions”, Aequat. Math., 92:1 (2018), 25–37 | DOI | MR | Zbl

[14] Moradi H. R., Omidvar M. E., Dragomir S. S., “An operator extension of Čebyšev inequality”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 25:2 (2017), 135–147 | DOI | MR | Zbl