Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_3_a10, author = {B. Moosavi and H. R. Moradi and M. Shah Hosseini}, title = {Further results on {Jensen-type} inequalities}, journal = {Problemy analiza}, pages = {112--124}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/} }
B. Moosavi; H. R. Moradi; M. Shah Hosseini. Further results on Jensen-type inequalities. Problemy analiza, Tome 8 (2019) no. 3, pp. 112-124. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a10/
[1] Bourin J.-C., “Some inequalities for norms on matrices and operators”, Linear Algebra Appl., 292 (1999), 139–154 | DOI | MR | Zbl
[2] Choi M. D., “A Schwarz inequality for positive linear maps on $C^*$–algebras”, Illinois J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl
[3] Davis C., “A Schwarz inequality for convex operator functions”, Proc. Amer. Math. Soc., 8 (1957), 42–44 | DOI | MR | Zbl
[4] Dragomir S. S., “A weakened version of Davis–Choi–Jensen's inequality for normalised positive linear maps”, Proyecciones, 36:1 (2017), 81–94 | DOI | MR | Zbl
[5] Dragomir S. S., “Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces”, Linear Multilinear Algebra, 58:7 (2010), 805–814 | DOI | MR | Zbl
[6] Fujii J.-I., “A trace inequality arising from quantum information theory”, Linear Algebra Appl., 400 (2005), 141–146 | DOI | MR | Zbl
[7] Hansen F., Pečarić J., Perić I., “Jensen's operator inequality and it's converses”, Math. Scand., 100:1 (2007), 61–73 | DOI | MR | Zbl
[8] Horváth L., Khan K. A., Pečarić J., “Cyclic refinements of the different versions of operator Jensen's inequality”, Electron. J. Linear Algebra, 31 (2016), 125–133 | DOI | MR | Zbl
[9] Mićić J., Moradi H. R., Furuichi S., “Choi–Davis–Jensen's inequality without convexity”, J. Math. Inequal., 12:4 (2018), 1075–1085 | DOI | MR | Zbl
[10] Mićić J., Pečarić J., “Some mappings related to Levinson's inequality for Hilbert space operators”, Filomat., 31:7 (2017), 1995–2009 | DOI | MR
[11] Mond B., Pečarić J., “On Jensen's inequality for operator convex functions”, Houston J. Math., 21 (1995), 739–754 | MR | Zbl
[12] Moradi H. R., Furuichi S., Mitroi F. C., Naseri R., “An extension of Jensen's operator inequality and its application to Young inequality”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113:2 (2019), 605–614 | DOI | MR | Zbl
[13] Moradi H. R., Omidvar M. E., Adil Khan M., Nikodem K., “Around Jensen's inequality for strongly convex functions”, Aequat. Math., 92:1 (2018), 25–37 | DOI | MR | Zbl
[14] Moradi H. R., Omidvar M. E., Dragomir S. S., “An operator extension of Čebyšev inequality”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 25:2 (2017), 135–147 | DOI | MR | Zbl