Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
Problemy analiza, Tome 8 (2019) no. 3, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $L_{n,\,N}(f, x)$ a trigonometric polynomial of order at most $n$ possessing the least quadratic deviation from $f$ with respect to the system $\left\{t_k = u + \frac{2\pi k}{N}\right\}_{k=0}^{N-1}$, where $u \in \mathbb{R}$ and $n \leq N/2$. Let $D^1$ be the space of $2\pi$-periodic piecewise continuously differentiable functions $f$ with a finite number of jump discontinuity points $-\pi = \xi_1 \ldots \xi_m = \pi$ and with absolutely continuous derivatives on each interval $(\xi_i, \xi_{i+1})$. In the present article, we consider the problem of approximation of functions $f \in D^1$ by the trigonometric polynomials $L_{n,\,N}(f, x)$. We have found the exact order estimate $\left|f(x) - L_{n,\,N}(f, x)\right| \leq c(f, \varepsilon)/n$, $\left|x - \xi_i\right| \geq \varepsilon$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
@article{PA_2019_8_3_a0,
     author = {G. G. Akniyev},
     title = {Approximation properties of some discrete {Fourier} sums for piecewise smooth discontinuous functions},
     journal = {Problemy analiza},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/}
}
TY  - JOUR
AU  - G. G. Akniyev
TI  - Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
JO  - Problemy analiza
PY  - 2019
SP  - 3
EP  - 15
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/
LA  - en
ID  - PA_2019_8_3_a0
ER  - 
%0 Journal Article
%A G. G. Akniyev
%T Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
%J Problemy analiza
%D 2019
%P 3-15
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/
%G en
%F PA_2019_8_3_a0
G. G. Akniyev. Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions. Problemy analiza, Tome 8 (2019) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/