Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
Problemy analiza, Tome 8 (2019) no. 3, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote by $L_{n,\,N}(f, x)$ a trigonometric polynomial of order at most $n$ possessing the least quadratic deviation from $f$ with respect to the system $\left\{t_k = u + \frac{2\pi k}{N}\right\}_{k=0}^{N-1}$, where $u \in \mathbb{R}$ and $n \leq N/2$. Let $D^1$ be the space of $2\pi$-periodic piecewise continuously differentiable functions $f$ with a finite number of jump discontinuity points $-\pi = \xi_1 \ldots \xi_m = \pi$ and with absolutely continuous derivatives on each interval $(\xi_i, \xi_{i+1})$. In the present article, we consider the problem of approximation of functions $f \in D^1$ by the trigonometric polynomials $L_{n,\,N}(f, x)$. We have found the exact order estimate $\left|f(x) - L_{n,\,N}(f, x)\right| \leq c(f, \varepsilon)/n$, $\left|x - \xi_i\right| \geq \varepsilon$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
@article{PA_2019_8_3_a0,
     author = {G. G. Akniyev},
     title = {Approximation properties of some discrete {Fourier} sums for piecewise smooth discontinuous functions},
     journal = {Problemy analiza},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/}
}
TY  - JOUR
AU  - G. G. Akniyev
TI  - Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
JO  - Problemy analiza
PY  - 2019
SP  - 3
EP  - 15
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/
LA  - en
ID  - PA_2019_8_3_a0
ER  - 
%0 Journal Article
%A G. G. Akniyev
%T Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions
%J Problemy analiza
%D 2019
%P 3-15
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/
%G en
%F PA_2019_8_3_a0
G. G. Akniyev. Approximation properties of some discrete Fourier sums for piecewise smooth discontinuous functions. Problemy analiza, Tome 8 (2019) no. 3, pp. 3-15. http://geodesic.mathdoc.fr/item/PA_2019_8_3_a0/

[1] Akniyev G. G., “Approximation of Continuous $2\pi$-periodic Piecewise Smooth Functions by Discrete Fourier Sums”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform.,, 19:1 (2019), 4–15 | DOI | MR | Zbl

[2] Akniyev G. G., “Approximation Properties of Discrete Fourier Sums for Some Piecewise Linear Functions”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 18:1 (2018), 4–16 (in Russian) | DOI | MR

[3] Akniyev G. G., “Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials”, Probl. Anal. Issues Anal., 6(24):2 (2017), 3–24 | DOI | MR | Zbl

[4] Bernshtein S. N., “On trigonometric interpolation by the method of least squares”, Dokl. Akad. Nauk USSR, 4 (1934), 1–5 (in Russian)

[5] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math., Szeged, 12 (1950), 11–17 | MR | Zbl

[6] Kalashnikov M. D., “On polynomials of best (quadratic) approximation on a given system of points”, Dokl. Akad. Nauk USSR, 105 (1955), 634–636 (in Russian) | MR

[7] Krilov V. I., “Convergence of algebraic interpolation with respect to the roots of a Chebyshev polynomial for absolutely continuous functions and functions with bounded variation”, Dokl. Akad. Nauk USSR, 107 (1956), 362–365 (in Russian) | MR

[8] Magomed-Kasumov M. G., “Approximation of piecewise smooth functions by the trigonometric Fourier series”, Materials of XIX International Saratov Winter School «Contemporary Problems of Function Theory and Their Applications», 2018, 190–193 (in Russian)

[9] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130 (in French)

[10] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135 (in French)

[11] Natanson I. P., “On the Convergence of Trigonometrical Interpolation at Equi-Distant Knots”, Annals of Mathematics, Second Series, 45:3 (1944), 457–471 | DOI | MR | Zbl

[12] Nikol'skii S. M., “On some methods of approximation by trigonometric sums”, Mathematics of the USSR–Izvestiya, 4 (1940), 509–520 (in Russian)

[13] Sharapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3 (1983), 223–234 | DOI | MR | Zbl

[14] Zygmund A., Trigonometric Series, v. 1, Cambridge University Press, Cambridge, 1959, 747 pp. | MR | Zbl