The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain
Problemy analiza, Tome 8 (2019) no. 2, pp. 51-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we apply the Cauchy integral method for the Laplace equation in multiply connected domains when the data on each boundary component has the form of the Dirichlet condition or the form of the Neumann condition. This analytic method gives highly accurate results. We give examples of applications of the method.
Keywords: Cauchy integral, mixed boundary value problem, multiply connected domain, approximate solution.
Mots-clés : Laplace equation
@article{PA_2019_8_2_a3,
     author = {P. N. Ivanshin and E. A. Shirokova},
     title = {The solution of a mixed boundary value problem for the {Laplace} equation in a multiply connected domain},
     journal = {Problemy analiza},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/}
}
TY  - JOUR
AU  - P. N. Ivanshin
AU  - E. A. Shirokova
TI  - The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain
JO  - Problemy analiza
PY  - 2019
SP  - 51
EP  - 66
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/
LA  - en
ID  - PA_2019_8_2_a3
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%A E. A. Shirokova
%T The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain
%J Problemy analiza
%D 2019
%P 51-66
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/
%G en
%F PA_2019_8_2_a3
P. N. Ivanshin; E. A. Shirokova. The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain. Problemy analiza, Tome 8 (2019) no. 2, pp. 51-66. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/

[1] Shirokova E. A., El-Shenawy A., “A Cauchy integral method of the solution of the 2D Dirichlet problem for simply or doubly connected domains”, Numerical Methods for Partial Differential Equations, 34 (2018), 2267–2278 | DOI | MR | Zbl

[2] Shirokova E. A., Ivanshin P. N., “Approximate Conformal Mappings and Elasticity Theory”, Journal of Complex Analysis, 2016, 4367205, 8 pp. | MR | Zbl

[3] Shirokova E. A., “On approximate conformal mapping of the unit disk on an simply connected domain”, Russian Mathematics (Iz VUZ), 58:3 (2014), 47–56 | DOI | MR | Zbl

[4] Gakhov F. D., Boundary Value Problems, Courier Corporation, 1990 | MR

[5] Jaswon M., “Integral equation methods in potential theory, I”, Proc. Roy. Soc. Ser. A, 275 (1963), 23–32 | DOI | MR | Zbl

[6] Symm G., “Integral equation methods in potential theory, II”, Proc. Roy. Soc. Ser. A, 275 (1963), 33–46 | DOI | MR | Zbl

[7] Mikhailov S. E., “On an integral equation of some boundary value problems for harmonic functions in plane multiply connected domains with nonregular boundary”, Mat. Sb. (N.S.), 121(163) (1983), 533–544 | MR

[8] Axelsson O., Barker V. A., Finite Element Solution of Boundary Value Problems, Academic Press, Orlando, FL, 1984 | MR | Zbl

[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, New York, NY, 1978 | MR | Zbl

[10] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, MA, 1987 | MR | Zbl

[11] Babuska I.,. Tempone R, Zouraris G. E., “Galerkin finite element approximations of stochastic elliptic partial differential equations”, SIAM J. Numer. Anal., 42:2 (2004), 800–825 | DOI | MR | Zbl

[12] Cialdea A., Leonessa V., Malaspina A., “On the Dirichlet problem for the Stokes system in multiply connected domains”, Abstr. Appl. Anal., 2013 (2013), 1–8 | DOI | MR

[13] Costabel M., Riva M. D., Dauge M., Musolino P., “Converging expansions for Lipschitz self similar perforations of a plane sector”, Integr. Equ. Oper. Theory, 88 (2017), 401–449 | DOI | MR | Zbl

[14] Hsieh C., Kassab A. J., “Complex variable boundary element methods for the solution of potential problems in simply and multiply connected domains”, Comput. Methods Appl. Mech. Eng., 86 (1991), 189–213 | DOI | MR | Zbl

[15] Liu C., “A highly accurate collocation Trefftz method for solving the Laplace equation in the doubly connected domains”, Numer. Methods Partial Differ. Equ., 24 (2008), 179–192 | DOI | MR | Zbl

[16] Anselone P. M., Moore R. H., “Approximate solutions of integral and operator equations”, J. Math. Anal. Appl., 9 (1964), 268–277 | DOI | MR | Zbl

[17] Buckner H., “Numerical methods for integral equations”, Survey of Numerical Analysis, ed. J. odd, McGraw-Hill, New York, 1962, 439–467 | MR

[18] Anselone P., Gonzalez-Fernandez J., “Uniformly convergent approximate solutions of Fredholm integral equations”, J. Math. Anal. Appl., 10:3 (1965), 519–536 | DOI | MR | Zbl

[19] Ray S. S., Sahu P. K., “Numerical methods for solving Fredholm integral equations of second kind”, Abstr. Appl. Anal., 2013 (2013), 17 pp. | DOI | MR

[20] Asmar N. H., Partial Differential Equations with Fourier Series and Boundary Value Problems, Dover Publications, 2016 | Zbl

[21] Lyusternik L. A., Sobolev V. I., The elements of functional analysis, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1951 | MR

[22] Achieser N. I., Theory of Approximation, Frederick Ungar Publishing Co., New York, 1956 | MR | Zbl