Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_2_a3, author = {P. N. Ivanshin and E. A. Shirokova}, title = {The solution of a mixed boundary value problem for the {Laplace} equation in a multiply connected domain}, journal = {Problemy analiza}, pages = {51--66}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/} }
TY - JOUR AU - P. N. Ivanshin AU - E. A. Shirokova TI - The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain JO - Problemy analiza PY - 2019 SP - 51 EP - 66 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/ LA - en ID - PA_2019_8_2_a3 ER -
P. N. Ivanshin; E. A. Shirokova. The solution of a mixed boundary value problem for the Laplace equation in a multiply connected domain. Problemy analiza, Tome 8 (2019) no. 2, pp. 51-66. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a3/
[1] Shirokova E. A., El-Shenawy A., “A Cauchy integral method of the solution of the 2D Dirichlet problem for simply or doubly connected domains”, Numerical Methods for Partial Differential Equations, 34 (2018), 2267–2278 | DOI | MR | Zbl
[2] Shirokova E. A., Ivanshin P. N., “Approximate Conformal Mappings and Elasticity Theory”, Journal of Complex Analysis, 2016, 4367205, 8 pp. | MR | Zbl
[3] Shirokova E. A., “On approximate conformal mapping of the unit disk on an simply connected domain”, Russian Mathematics (Iz VUZ), 58:3 (2014), 47–56 | DOI | MR | Zbl
[4] Gakhov F. D., Boundary Value Problems, Courier Corporation, 1990 | MR
[5] Jaswon M., “Integral equation methods in potential theory, I”, Proc. Roy. Soc. Ser. A, 275 (1963), 23–32 | DOI | MR | Zbl
[6] Symm G., “Integral equation methods in potential theory, II”, Proc. Roy. Soc. Ser. A, 275 (1963), 33–46 | DOI | MR | Zbl
[7] Mikhailov S. E., “On an integral equation of some boundary value problems for harmonic functions in plane multiply connected domains with nonregular boundary”, Mat. Sb. (N.S.), 121(163) (1983), 533–544 | MR
[8] Axelsson O., Barker V. A., Finite Element Solution of Boundary Value Problems, Academic Press, Orlando, FL, 1984 | MR | Zbl
[9] Ciarlet P. G., The Finite Element Method for Elliptic Problems, North-Holland, New York, NY, 1978 | MR | Zbl
[10] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, MA, 1987 | MR | Zbl
[11] Babuska I.,. Tempone R, Zouraris G. E., “Galerkin finite element approximations of stochastic elliptic partial differential equations”, SIAM J. Numer. Anal., 42:2 (2004), 800–825 | DOI | MR | Zbl
[12] Cialdea A., Leonessa V., Malaspina A., “On the Dirichlet problem for the Stokes system in multiply connected domains”, Abstr. Appl. Anal., 2013 (2013), 1–8 | DOI | MR
[13] Costabel M., Riva M. D., Dauge M., Musolino P., “Converging expansions for Lipschitz self similar perforations of a plane sector”, Integr. Equ. Oper. Theory, 88 (2017), 401–449 | DOI | MR | Zbl
[14] Hsieh C., Kassab A. J., “Complex variable boundary element methods for the solution of potential problems in simply and multiply connected domains”, Comput. Methods Appl. Mech. Eng., 86 (1991), 189–213 | DOI | MR | Zbl
[15] Liu C., “A highly accurate collocation Trefftz method for solving the Laplace equation in the doubly connected domains”, Numer. Methods Partial Differ. Equ., 24 (2008), 179–192 | DOI | MR | Zbl
[16] Anselone P. M., Moore R. H., “Approximate solutions of integral and operator equations”, J. Math. Anal. Appl., 9 (1964), 268–277 | DOI | MR | Zbl
[17] Buckner H., “Numerical methods for integral equations”, Survey of Numerical Analysis, ed. J. odd, McGraw-Hill, New York, 1962, 439–467 | MR
[18] Anselone P., Gonzalez-Fernandez J., “Uniformly convergent approximate solutions of Fredholm integral equations”, J. Math. Anal. Appl., 10:3 (1965), 519–536 | DOI | MR | Zbl
[19] Ray S. S., Sahu P. K., “Numerical methods for solving Fredholm integral equations of second kind”, Abstr. Appl. Anal., 2013 (2013), 17 pp. | DOI | MR
[20] Asmar N. H., Partial Differential Equations with Fourier Series and Boundary Value Problems, Dover Publications, 2016 | Zbl
[21] Lyusternik L. A., Sobolev V. I., The elements of functional analysis, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1951 | MR
[22] Achieser N. I., Theory of Approximation, Frederick Ungar Publishing Co., New York, 1956 | MR | Zbl