Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_2_a0, author = {George A. Anastassiou}, title = {Multivariate {Iyengar} type inequalities for radial functions}, journal = {Problemy analiza}, pages = {3--27}, publisher = {mathdoc}, volume = {8}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/} }
George A. Anastassiou. Multivariate Iyengar type inequalities for radial functions. Problemy analiza, Tome 8 (2019) no. 2, pp. 3-27. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/
[1] Agarwal R. P., Dragomir S. S., “An application of Hayashi's inequality for differentiable functions”, Computers Math. Applic., 1996, no. 6, 95–99 | DOI | MR | Zbl
[2] Anastassiou G. A., Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009 | MR | Zbl
[3] Anastassiou G. A., “General Iyengar type inequalities”, J. of Computational Analysis and Applications, 28:5 (2020), 786–797 | MR
[4] Xiao-Liang Cheng, “The Iyengar-type inequality”, Applied Math. Letters, 14:8 (2001), 975–978 | DOI | MR | Zbl
[5] Iyengar K. S. K., “Note on an inequality”, Math. Student, 1938, no. 6, 75–76 | Zbl
[6] Zheng Liu, “Note on Iyengar's inequality”, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat.,, 2005, no. 16, 29–35 | MR | Zbl
[7] Qi F., “Further generalizations of inequalities for an integral”, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat., 1997, no. 8, 79–83 | MR
[8] Rudin W., Real and Complex Analysis, International Student edition, Mc Graw Hill, London–New York, 1970 | MR
[9] Stroock D., A Concise Introduction to the Theory of Integration, Third Edition, Birkhaüser, Boston–Basel–Berlin, 1999 | MR | Zbl