Multivariate Iyengar type inequalities for radial functions
Problemy analiza, Tome 8 (2019) no. 2, pp. 3-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we present a variety of multivariate Iyengar type inequalities for radial functions defined on the shell and ball. Our approach is based on the polar coordinates in $\mathbb{R}^{N}$, $N\geq 2$, and the related multivariate polar integration formula. Via this method we transfer well-known univariate Iyengar type inequalities and univariate author's related results into multivariate Iyengar inequalities.
Keywords: Iyengar inequality, Polar coordinates, radial function, Shell, Ball.
@article{PA_2019_8_2_a0,
     author = {George A. Anastassiou},
     title = {Multivariate {Iyengar} type inequalities for radial functions},
     journal = {Problemy analiza},
     pages = {3--27},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/}
}
TY  - JOUR
AU  - George A. Anastassiou
TI  - Multivariate Iyengar type inequalities for radial functions
JO  - Problemy analiza
PY  - 2019
SP  - 3
EP  - 27
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/
LA  - en
ID  - PA_2019_8_2_a0
ER  - 
%0 Journal Article
%A George A. Anastassiou
%T Multivariate Iyengar type inequalities for radial functions
%J Problemy analiza
%D 2019
%P 3-27
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/
%G en
%F PA_2019_8_2_a0
George A. Anastassiou. Multivariate Iyengar type inequalities for radial functions. Problemy analiza, Tome 8 (2019) no. 2, pp. 3-27. http://geodesic.mathdoc.fr/item/PA_2019_8_2_a0/

[1] Agarwal R. P., Dragomir S. S., “An application of Hayashi's inequality for differentiable functions”, Computers Math. Applic., 1996, no. 6, 95–99 | DOI | MR | Zbl

[2] Anastassiou G. A., Fractional Differentiation Inequalities, Research Monograph, Springer, New York, 2009 | MR | Zbl

[3] Anastassiou G. A., “General Iyengar type inequalities”, J. of Computational Analysis and Applications, 28:5 (2020), 786–797 | MR

[4] Xiao-Liang Cheng, “The Iyengar-type inequality”, Applied Math. Letters, 14:8 (2001), 975–978 | DOI | MR | Zbl

[5] Iyengar K. S. K., “Note on an inequality”, Math. Student, 1938, no. 6, 75–76 | Zbl

[6] Zheng Liu, “Note on Iyengar's inequality”, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat.,, 2005, no. 16, 29–35 | MR | Zbl

[7] Qi F., “Further generalizations of inequalities for an integral”, Univ. Beograd Publ. Elektrotechn. Fak., Ser. Mat., 1997, no. 8, 79–83 | MR

[8] Rudin W., Real and Complex Analysis, International Student edition, Mc Graw Hill, London–New York, 1970 | MR

[9] Stroock D., A Concise Introduction to the Theory of Integration, Third Edition, Birkhaüser, Boston–Basel–Berlin, 1999 | MR | Zbl