Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_1_a5, author = {A. N. Kirillov}, title = {The method of normal local stabilization}, journal = {Problemy analiza}, pages = {72--83}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a5/} }
A. N. Kirillov. The method of normal local stabilization. Problemy analiza, Tome 8 (2019) no. 1, pp. 72-83. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a5/
[1] Davis C., “Theory of positive linear dependence”, Amer. J. Math., 76 (1954), 733–746 | DOI | MR | Zbl
[2] Utkin V. I., Sliding Modes in Control and Optimization, Springer-Verlag, 1992 | MR | Zbl
[3] Bartolini G., Pisano A., Punta E., Usai E., “A survey of applications of second order sliding mode control to mechanical systems”, Int. J. Control, 76 (2003), 875–892 | DOI | MR | Zbl
[4] Bhat S. P., Bernstein D. S., “Finite-time stability of autonomous systems”, SIAM J. Control Optim., 38, 751–766 | DOI | MR | Zbl
[5] Kirillov A. N., “The stabilization problem for certain class of ecological systems”, Int. J. Softw. Eng. Knowl. Eng., 1997, no. 7, 247–251 | DOI
[6] Petrov N. N., “Local controllability of autonomous systems”, Differ. Uravn., 1968, no. 7, 1218–1232 (in Russian) | MR | Zbl
[7] Petrov N. N., “A solution of a certain problem in control theory”, Differ. Uravn., 1969, no. 5, 962–963 (in Russian) | MR | Zbl