Cauchy projectors on non-smooth and non-rectifiable curves
Problemy analiza, Tome 8 (2019) no. 1, pp. 65-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(t)$ be defined on a closed Jordan curve $\Gamma$ that divides the complex plane on two domains $D^{+}$, $D^{-}$, $\infty\in D^{-}$. Assume that it is representable as a difference $f(t)=F^{+}(t)-F^{-}(t)$, $t\in\Gamma$, where $F^{\pm}(t)$ are limits of a holomorphic in $\overline{\mathbb C}\setminus\Gamma$ function $F(z)$ for $D^{\pm}\ni z\to t\in\Gamma$, $F(\infty)=0$. The mappings $f\mapsto F^{\pm}$ are called Cauchy projectors. Let $H_{\nu}(\Gamma)$ be the space of functions satisfying on $\Gamma$ the Hölder condition with exponent $\nu\in (0,1].$ It is well known that on any smooth (or piecewise-smooth) curve $\Gamma$ the Cauchy projectors map $H_{\nu}(\Gamma)$ onto itself for any $\nu\in (0, 1)$, but for essentially non-smooth curves this proposition is not valid. We will show that even for non-rectifiable curves the Cauchy projectors continuously map the intersection of all spaces $H_{\nu}(\Gamma)$, $0\nu1$ (considered as countably-normed Frechet space) onto itself.
Keywords: Cauchy projectors, non-smooth curves
Mots-clés : non-rectifiable curves.
@article{PA_2019_8_1_a4,
     author = {B. A. Kats and S. R. Mironova and A. Yu. Pogodina},
     title = {Cauchy projectors on non-smooth and non-rectifiable curves},
     journal = {Problemy analiza},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/}
}
TY  - JOUR
AU  - B. A. Kats
AU  - S. R. Mironova
AU  - A. Yu. Pogodina
TI  - Cauchy projectors on non-smooth and non-rectifiable curves
JO  - Problemy analiza
PY  - 2019
SP  - 65
EP  - 71
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/
LA  - en
ID  - PA_2019_8_1_a4
ER  - 
%0 Journal Article
%A B. A. Kats
%A S. R. Mironova
%A A. Yu. Pogodina
%T Cauchy projectors on non-smooth and non-rectifiable curves
%J Problemy analiza
%D 2019
%P 65-71
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/
%G en
%F PA_2019_8_1_a4
B. A. Kats; S. R. Mironova; A. Yu. Pogodina. Cauchy projectors on non-smooth and non-rectifiable curves. Problemy analiza, Tome 8 (2019) no. 1, pp. 65-71. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/

[1] Gakhov F. D., Boundary value problems, Nauka, M., 1977 | MR | Zbl

[2] Muskhelishvili N. I., Singular integral equations, Nauka, M., 1962 | MR

[3] Jian-Ke Lu, Boundary value problems for analytic functions, World Scientific, Singapore, 1993 | MR | Zbl

[4] Abreu-Blaya R., Bory-Reyes J., Kats B. A., “The Cauchy Type Integraland Singular Integral Operator over closed Jordan curves”, Monatshefte fur Mathematik, 176:1 (2015), 1–15 | DOI | MR | Zbl

[5] Privalov I. I., Boundary properties of analytic functions, GITTL, M., 1950 | MR

[6] Dyn'kin E. M., “Smoothness of the Cauchy type integral”, Zapiski nauchnyhsemin. LOMI AN USSR, 92, 1979, 115–133 | MR | Zbl

[7] Salimov T., “Direct estimate for singular Cauchy integral over closed path”, Nauchn. trudy MV i SSO Azerb. SSR, 1979, no. 5, 59–75 | MR

[8] Gel'fand I. M., Shilov G. E., Spaces of test and generalized functions, Physmathgiz, M., 1958 | MR

[9] Gorin S. V., Fredholm property of singular operators in spaces of infinitely differentiable vector-functions, cand. diss., Rostov-na-Donu, 2017

[10] Gorin S. V., “An algebra of singular operators in space of smooth functions”, Izvestija vuzov. Sev.-Caucas Region. Ser. Estestv. Nauki, 2006, no. 1, 21–28

[11] Stein E. M., Singular integrals and differential properties of functions, Princeton University Press, Princeton, 1970 | MR

[12] Kats B. A., “Riemann problem on a closed Jordan curve”, Izvestija vuzov. Matem., 1983, no. 4, 68–80 | MR | Zbl

[13] Vekua I. N., Generalized analytical functions, Nauka, M., 1988 | MR

[14] Falconer K. J., Fractal geometry, 3rd edition, Wiley and Sons, 2014 | MR | Zbl

[15] Dolzhenko E. P., “On “erazing” of singularities of analytic functions”, Uspekhi Matem. Nauk, 18:4 (1963), 135–142 | MR | Zbl