Cauchy projectors on non-smooth and non-rectifiable curves
Problemy analiza, Tome 8 (2019) no. 1, pp. 65-71

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(t)$ be defined on a closed Jordan curve $\Gamma$ that divides the complex plane on two domains $D^{+}$, $D^{-}$, $\infty\in D^{-}$. Assume that it is representable as a difference $f(t)=F^{+}(t)-F^{-}(t)$, $t\in\Gamma$, where $F^{\pm}(t)$ are limits of a holomorphic in $\overline{\mathbb C}\setminus\Gamma$ function $F(z)$ for $D^{\pm}\ni z\to t\in\Gamma$, $F(\infty)=0$. The mappings $f\mapsto F^{\pm}$ are called Cauchy projectors. Let $H_{\nu}(\Gamma)$ be the space of functions satisfying on $\Gamma$ the Hölder condition with exponent $\nu\in (0,1].$ It is well known that on any smooth (or piecewise-smooth) curve $\Gamma$ the Cauchy projectors map $H_{\nu}(\Gamma)$ onto itself for any $\nu\in (0, 1)$, but for essentially non-smooth curves this proposition is not valid. We will show that even for non-rectifiable curves the Cauchy projectors continuously map the intersection of all spaces $H_{\nu}(\Gamma)$, $0\nu1$ (considered as countably-normed Frechet space) onto itself.
Keywords: Cauchy projectors, non-smooth curves
Mots-clés : non-rectifiable curves.
@article{PA_2019_8_1_a4,
     author = {B. A. Kats and S. R. Mironova and A. Yu. Pogodina},
     title = {Cauchy projectors on non-smooth and non-rectifiable curves},
     journal = {Problemy analiza},
     pages = {65--71},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/}
}
TY  - JOUR
AU  - B. A. Kats
AU  - S. R. Mironova
AU  - A. Yu. Pogodina
TI  - Cauchy projectors on non-smooth and non-rectifiable curves
JO  - Problemy analiza
PY  - 2019
SP  - 65
EP  - 71
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/
LA  - en
ID  - PA_2019_8_1_a4
ER  - 
%0 Journal Article
%A B. A. Kats
%A S. R. Mironova
%A A. Yu. Pogodina
%T Cauchy projectors on non-smooth and non-rectifiable curves
%J Problemy analiza
%D 2019
%P 65-71
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/
%G en
%F PA_2019_8_1_a4
B. A. Kats; S. R. Mironova; A. Yu. Pogodina. Cauchy projectors on non-smooth and non-rectifiable curves. Problemy analiza, Tome 8 (2019) no. 1, pp. 65-71. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a4/