Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2019_8_1_a0, author = {D. F. Abzalilov and E. A. Shirokova}, title = {The approximate conformal mapping onto multiply connected domains}, journal = {Problemy analiza}, pages = {3--16}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/} }
D. F. Abzalilov; E. A. Shirokova. The approximate conformal mapping onto multiply connected domains. Problemy analiza, Tome 8 (2019) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/
[1] Schinzinger R., Laura P. A. A., Conformal Mapping: Methods and Applications, Dover Publications, 2003 | MR | Zbl
[2] Crowdy D., Marshall J., “Conformal Mappings between Canonical Multiply Connected Domains”, Computational Methods and Function Theory, 6 (2006), 59–76 | DOI | MR | Zbl
[3] Murid A. H. M., Laey-Nee Hu, “Numerical conformal mapping of bounded multiply connected regions by an integral equation method”, Int. J. Contemp. Math. Sci., 4 (2009), 1121–1147 | MR | Zbl
[4] Wegmann R., “Fast conformal mapping of multiply connected regions”, J. Comput. Appl. Math., 130 (2001), 119–138 | DOI | MR | Zbl
[5] Wegmann R., Nasser M. M. S., “The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions”, J. Comput. Appl. Math., 214 (2008), 36–57 | DOI | MR | Zbl
[6] Wen G. C., Conformal mapping and boundary value problems, English transl. of Chinese edition, American Math. Soc., Providence, RI, 1984 | MR
[7] Nasser M. M. S., “A boundary integral equation for conformal mapping of bounded multiply connected regions”, Comput. Methods Funct. Theory, 9 (2009), 127–143 | DOI | MR | Zbl
[8] Nasser M. M. S., Al-Shihri F. A. A., “A fast boundary integral equation method for conformal mapping of multiply connected regions”, SIAM J. on Sci. Comp., 35:3 (2013), 1736–1760 | DOI | MR
[9] Sangawi A. W. K., Murid A. H. M., Nasser M. M. S., “Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits”, Appl. Math. Comput., 218 (2011), 2055–2068 | DOI | MR | Zbl
[10] Sangawi A. W. K., Murid A. H. M., Nasser M. M. S., “Annulus with circular slit map of bounded multiply connected regions via integral equation method”, Bull. Malays. Math. Sci. Soc., 35:2 (2012), 945–969 | MR
[11] Yunus A. A. M., Murid A. H. M., Nasser M. M. S., “Numerical conformal mapping and its inverse of unbounded multiply connected regions onto logarithmic spiral slit regions and straight slit regions”, Proc. of the Royal Society A - Math. Phys. and Eng. Sci., 470:2162 (2014), 20130514 | DOI | MR | Zbl
[12] Yunus A. A. M., Murid A. H. M., Nasser M. M. S., “Numerical evaluation of conformal mapping and its inverse for unbounded multiply connected regions”, Bull. Malays. Math. Sci. Soc., 1:24 (2014), 1–24 | MR | Zbl
[13] Wegmann R., “Methods for numerical conformal mappings”, Handbook of complex analysis: geometric function theory, v. 2, Elsevier, Amsterdam, The Netherlands, 2005, 351–477 | DOI | MR | Zbl
[14] Shirokova E. A., “On the approximate conformal mapping of the unit disk on a simply connected domain”, Russian Math., 58 (2014), 47–56 | DOI | MR | Zbl
[15] Shirokova E. A., Ivanshin P. N., “Approximate Conformal Mappings and Elasticity Theory”, J. of Compl. Analysis, 2016 | DOI | MR | Zbl
[16] Abzalilov D. F., Shirokova E. A., “The approximate conformal mapping onto simply and doubly connected domains”, Complex Variables and Elliptic Equations, 62 (2017), 554–565 | DOI | MR | Zbl
[17] DeLillo T. K., “The Accuracy of Numerical Conformal Mapping Methods: A Survey of Examples and Results”, SIAM J. Num. Anal., 31 (1994) | DOI | MR | Zbl
[18] DeLillo T. K., “On some relations among numerical conformal mapping methods”, J. Comput. Appl. Math., 19 (1987), 363–377 | DOI | MR | Zbl
[19] Henrici P., Applied and computational complex analysis, v. 3, John Wiley, New York, NY, 1986 | MR | Zbl
[20] Gakhov F. D., Boundary value problems, Pergamon Press, Oxford, 1966 | MR | Zbl