The approximate conformal mapping onto multiply connected domains
Problemy analiza, Tome 8 (2019) no. 1, pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of boundary curve reparametrization is generalized to the case of multiply connected domains. We construct the approximate analytical conformal mapping of the unit disk with $N$ circular slits or an annulus with $(N-1)$ circular slits onto an arbitrary $(N+1)$ multiply connected finite domain with a smooth boundary. The method is based on the solution of the Fredholm equation. This solution is reduced to the solution of a linear system with unknown Fourier coefficients. The approximate mapping function has the form of a set of Laurent polynomials in the set of annular regions The method is easily computable.
Keywords: conformal mapping, multiply connected domain, Fredholm integral equation.
@article{PA_2019_8_1_a0,
     author = {D. F. Abzalilov and E. A. Shirokova},
     title = {The approximate conformal mapping onto multiply connected domains},
     journal = {Problemy analiza},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/}
}
TY  - JOUR
AU  - D. F. Abzalilov
AU  - E. A. Shirokova
TI  - The approximate conformal mapping onto multiply connected domains
JO  - Problemy analiza
PY  - 2019
SP  - 3
EP  - 16
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/
LA  - en
ID  - PA_2019_8_1_a0
ER  - 
%0 Journal Article
%A D. F. Abzalilov
%A E. A. Shirokova
%T The approximate conformal mapping onto multiply connected domains
%J Problemy analiza
%D 2019
%P 3-16
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/
%G en
%F PA_2019_8_1_a0
D. F. Abzalilov; E. A. Shirokova. The approximate conformal mapping onto multiply connected domains. Problemy analiza, Tome 8 (2019) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/PA_2019_8_1_a0/