@article{PA_2018_7_3_a8,
author = {A. G. Losev and E. A. Mazepa},
title = {On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact {Riemannian} manifolds},
journal = {Problemy analiza},
pages = {101--112},
year = {2018},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a8/}
}
TY - JOUR AU - A. G. Losev AU - E. A. Mazepa TI - On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds JO - Problemy analiza PY - 2018 SP - 101 EP - 112 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a8/ LA - en ID - PA_2018_7_3_a8 ER -
A. G. Losev; E. A. Mazepa. On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds. Problemy analiza, Tome 7 (2018) no. 3, pp. 101-112. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a8/
[1] Ancona A., “Negative curved manifolds, elliptic operators, and the Martin boundary”, Ann. of Math. (2), 125:3 (1987), 495–536 | DOI | MR | Zbl
[2] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin–New York, 1983 | MR | Zbl
[3] Grigor'yan A., “Analitic and geometric background of recurence and nonexplosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (1999), 135–249 | DOI | MR | Zbl
[4] Grigor'yan A., Heat Kernel and Analysis on Manifolds, AMS/IP Studies in Advanced Mathematics, 47, Amer. Math. Soc., International Press, 2009 | MR | Zbl
[5] Grigor'yan A., Losev A. G., “Dimension of spaces of solutions of the Schrödinger equation on noncompact Riemannian manifolds”, Mathematical physics and computer simulation, 20:3 (2017), 34–42 (in Russian) | DOI
[6] Grigor'yan A., Masamune J., “Parabolicity and stochastic completeness of manifolds in terms of the Green formula”, J. Math. Pures Appl. (9), 100:5 (2013), 607–632 | DOI | MR | Zbl
[7] Korol'kov S. A., “On the solvability of boundary value problems for the stationary Schrödinger equation in unbounded domains on Riemannian manifolds”, Differ. Equ., 51:6 (2015), 738–744 | DOI | MR | Zbl
[8] Li P., Tam L. F., “Green's functions, harmonic functions, and volume comparison”, J. Differential Geom., 41 (1995), 277–318 | DOI | MR | Zbl
[9] Losev A. G., “On the solvability of the Dirichlet problem for the Poisson equation on certain noncompact Riemannian manifolds”, Differ. Equ., 53:12 (2017), 1643–1652 | DOI | MR | Zbl
[10] Losev A. G., Mazepa E. A., “Bounded solutions of the Schrödinger equation on Riemannian products”, St. Petersburg Math. J., 13:1 (2002), 57–73 | MR | Zbl
[11] Losev A. G., Mazepa E. A., Chebanenko V. Y., “Unbounded solutions of the stationary Schrödinger equation on Riemannian manifolds”, Comput. Methods Funct. Theory, 3:2 (2003), 443–451 | DOI | MR | Zbl
[12] Mastrolia P., Monticelli D. D., Punza F., “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, Adv. Differential Equations, 23:1/2 (2018), 89–108 | MR | Zbl
[13] Mazepa E. A., “Boundary value problems for stationary Schrödinger equation on Riemannian manifolds”, Sib. Math. J., 43:3 (2002), 591–599 | DOI | MR | Zbl
[14] Mazepa E. A., “On the solvability of boundary value problems for the Poisson equation on noncompact Riemannian manifolds”, Mathematical physics and computer simulation, 20:3 (2017), 135–145 (in Russian) | DOI | MR
[15] Vähäkangas A., “Dirichlet problem at infinity for A-harmonic functions”, Potential Anal., 27:1 (2007), 27–44 | DOI | MR | Zbl