On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions
Problemy analiza, Tome 7 (2018) no. 3, pp. 63-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a uniform approximation by differences $\Theta_1-\Theta_2$ of simplest fractions (s.f.'s), i. e., by logarithmic derivatives of rational functions on continua $K$ of the class $\Omega_r$, $r>0$ (i. e., any points $z_0, z_1\in K$ can be joined by a rectifiable curve in $K$ of length $\le r$). We prove that for any proper one-pole fraction $T$ of degree $m$ with a zero residue there are such s.f.'s $\Theta_1,\Theta_2$ of order $\le (m-1)n$ that $\|T+\Theta_1-\Theta_2\|_K\le 2r^{-1}A^{2n+1}n!^2/(2n)!^2$, where the constant $A$ depends on $r$, $T$ and $K$. Hence, the rate of approximation of any fixed individual rational function $R$, whose integral is single-valued on $\mathbb{C}$, has the same order. This result improves the famous estimate $\|R+\Theta_1-\Theta_2\|_{C(K)}\le 2e^r r^n/n!$, given by Danchenko for the case $\|R\|_{C(K)}\le 1$.
Keywords: difference of simplest fractions, rate of uniform approximation, logarithmic derivative of rational function.
@article{PA_2018_7_3_a5,
     author = {M. A. Komarov},
     title = {On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions},
     journal = {Problemy analiza},
     pages = {63--71},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a5/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions
JO  - Problemy analiza
PY  - 2018
SP  - 63
EP  - 71
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_3_a5/
LA  - en
ID  - PA_2018_7_3_a5
ER  - 
%0 Journal Article
%A M. A. Komarov
%T On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions
%J Problemy analiza
%D 2018
%P 63-71
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_3_a5/
%G en
%F PA_2018_7_3_a5
M. A. Komarov. On approximation of the rational functions, whose integral is single-valued on $\mathbb{C}$, by differences of simplest fractions. Problemy analiza, Tome 7 (2018) no. 3, pp. 63-71. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a5/

[1] Braess D., “On rational approximation of the exponential and the square root function”, Rational Approximation and Interpolation, eds. P. R. Graves-Morris, E. B. Saff, R. S. Varga, Springer, Heidelberg–New York, 1984, 89–99 | DOI | MR

[2] Danchenko V. I., “Estimates of derivatives of simplest fractions and other questions”, Sb. Math., 197:4 (2006), 505–524 | DOI | MR | Zbl

[3] Danchenko V. I., “O ratsionalnykh sostavlyayuschikh meromorfnykh funktsii i ikh proizvodnykh”, Analysis Mathematica, 16:4 (1990), 241–255 (In Russian) | DOI | MR | Zbl

[4] Danchenko V. I., Chunaev P. V., “Approximation by simple partial fractions and their generalizations”, J. Math. Sci. (N.Y.), 176:6 (2011), 844–859 | DOI | MR | Zbl

[5] Danchenko V. I., Danchenko D. Y., “Approximation by simplest fractions”, Math. Notes, 70:4 (2001), 502–507 | DOI | MR | Zbl

[6] Goluzin G. M., Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, 26, American Mathematical Society, Providence, R.I., 1969, vi+676 pp. | DOI | MR | Zbl

[7] Komarov M. A., “On approximation by differences of simple partial fractions”, Abstracts International Conference “Complex Analysis and its Applications” (Gelendzhik–Krasnodar, June 2–9, 2018), Kuban St. Univ., Krasnodar, 2018, 65

[8] Komarov M. A., “On approximation by special differences of simple partial fractions”, Algebra i analiz, 30:4 (2018), 47–60

[9] Kosukhin O. N., “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl