Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_3_a12, author = {E. V. Tyurikov}, title = {One case of extended boundary value problem of the membrane theory of convex shells by {I.\,N.~Vekua}}, journal = {Problemy analiza}, pages = {153--162}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_3_a12/} }
E. V. Tyurikov. One case of extended boundary value problem of the membrane theory of convex shells by I.\,N.~Vekua. Problemy analiza, Tome 7 (2018) no. 3, pp. 153-162. http://geodesic.mathdoc.fr/item/PA_2018_7_3_a12/
[1] Gol'denveizer A. L., “On the application of the Riemann–Hilbert problem solutions to the calculation of membrane shells”, Prikl. Mat. Mekh., 15:2 (1951), 149–166
[2] Muskhelishvili N. I., Singular integral equations, Fizmatgiz, M., 1968, 511 pp. (in Russian) | MR
[3] Tyurikov E. V., “Boundary problems of the theory of infinitesimal bending of the surfaces of positive curvature with piecewise smooth edge”, Sbornik: Mathematics, 103(145):3 (7) (1977), 445–462 | MR | Zbl
[4] Tyurikov E. V., “Boundary problem of membrane theory of convex shells for one class of symmetric domes”, Izv. vuzov. North Caucasus region. Natural sciences, 2018, no. 1, 49–54 | DOI
[5] Tyurikov E. V., “Geometric Analogue of the Vekua–Goldenveizer Problem”, Doklady Russian Academy of Sciences, 424:4 (2009), 455–458 | MR
[6] Tyurikov E. V., “On one boundary problem of the theory of infinitesimal bends of the surfaces”, Vladikavkaz Mathematical Journal, 9:1 (2007), 62–68 | MR | Zbl
[7] Tyurikov E. V., “About one special Riemann–Hilbert problem and its application”, Izv. vuzov. North Caucasus region. Natural sciences, 2016, no. 4, 31–35 | DOI
[8] Vekua I. N., Generalized analytic functions, Fizmatgiz, M., 1959 (in Russian) | MR | Zbl
[9] Vekua I. N., Some General Methods for Constructing Versions of Shell Theory, Fizmatgiz, M., 1982 (in Russian) | MR