Families of elliptic functions and uniformization of complex tori with a unique point over infinity
Problemy analiza, Tome 7 (2018) no. 2, pp. 98-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem of describing a one-parametric family of elliptic functions which uniformizes a given family of ramified coverings of the Riemann sphere with maximal possible ramification over infinity. We find a PDE for the family of functions and use it to deduce a system of ODEs for their critical points.
Keywords: Riemann surface, complex torus, elliptic function, uniformization.
@article{PA_2018_7_2_a6,
     author = {S. R. Nasyrov},
     title = {Families of elliptic functions and uniformization of complex tori with a unique point over infinity},
     journal = {Problemy analiza},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a6/}
}
TY  - JOUR
AU  - S. R. Nasyrov
TI  - Families of elliptic functions and uniformization of complex tori with a unique point over infinity
JO  - Problemy analiza
PY  - 2018
SP  - 98
EP  - 111
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a6/
LA  - en
ID  - PA_2018_7_2_a6
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%T Families of elliptic functions and uniformization of complex tori with a unique point over infinity
%J Problemy analiza
%D 2018
%P 98-111
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a6/
%G en
%F PA_2018_7_2_a6
S. R. Nasyrov. Families of elliptic functions and uniformization of complex tori with a unique point over infinity. Problemy analiza, Tome 7 (2018) no. 2, pp. 98-111. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a6/

[1] Akhiezer N.I., Elements of the Theory of Elliptic Functions, Transl. of Mathematical Monographs, 79, American Mathematical Soc., RI, 1990 | DOI | MR | Zbl

[2] Alexandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976 (in Russian) | MR

[3] Hurwitz A., “Über Riemannsche Flächen mit gegeben Verzweigungpunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[4] Hurwitz A., “Über die Anzahl der Riemannsche Flac̈hen mit gegeben Verzweigungpunkten”, Math. Ann., 55 (1902), 53–66 | DOI | MR | Zbl

[5] Lando S. K., “Ramified coverings of the two-dimensional sphere and the intersection theory in spaces of meromorphic functions on algebraic curves”, Russian Math. Surveys, 57:3 (2002), 463–533 | DOI | MR | Zbl

[6] Lando S.K., Zvonkin A.K., Graphs on Surfaces and Their Applications, Encyclopaedia Math. Sci., 141, Springer Verlag, Berlin–Heidelberg–New York, 2004 | DOI | MR | Zbl

[7] Lloyd E., “Riemann surface transformation groups”, J. Combin. Theory Ser. A, 13 (1972), 17–27 | DOI | MR | Zbl

[8] Mednykh A. D., “Nonequivalent coverings of Riemann surfaces with a prescribed ramification type”, Sib. Math. J., 25:4 (1984), 120–142 (in Russian) | MR | Zbl

[9] Mednykh A. D., “A new method for counting coverings over manifold with finitely generated fundamental group”, Dokl. Math., 74:1 (2006), 498–502 | DOI | MR | Zbl

[10] Nasyrov S. R., Geometric Problems of the Theory of Ramified Coverings of Riemann Surfaces, Magarif, Kazan, 2008

[11] Nasyrov S. R., “Determination of the polynomial uniformizing a given compact Riemann surface”, Math. Notes, 91:3–4 (2012), 558–567 | DOI | MR | Zbl

[12] Nasyrov S. R., “Uniformization of Simply-Connected Ramified Coverings of the Sphere by Rational Functions”, Lobachevskii J. Math., 39:2 (2018), 252–258 | DOI | MR | Zbl

[13] Nasyrov S. R., “Uniformization of one-parametric families of complex tori”, Russian Math. (Iz. VUZ), 61:8 (2017), 36–45 | DOI | MR | Zbl

[14] Weyl H., “Über das Hurwitzsche Problem der Bestimmung der Anzahl Riemannscher Flächen von gegebener Verzweigungsart”, Comment. Math. Helv., 3 (1931), 103–113 | DOI | MR