), the existence and properties of which are established by S. Kichenassamy and L. Veron. The properties of $p$-harmonic Green mappings established in the general case are analogous to the properties of harmonic Green's mappings ($p = 2$, $n = 3$). In particular, it is proved that the $p$-harmonic radius of the spatial domain has a geometric meaning analogous to the conformal radius of a plane domain.
@article{PA_2018_7_2_a5,
author = {B. E. Levitskii},
title = {Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic {Green's} mappings},
journal = {Problemy analiza},
pages = {82--97},
year = {2018},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/}
}
B. E. Levitskii. Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings. Problemy analiza, Tome 7 (2018) no. 2, pp. 82-97. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/
[1] Russian Math. (Iz. VUZ), 50:10 (2006), 8–16 | MR
[2] Dubinin V. N., “Capacities and Geometric Transformations of Subsets in n-Space”, Geom. Funct. Anal., 33:4 (1993), 342–369 | DOI | MR
[3] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014, 344 pp. | MR | Zbl
[4] Flucher M., Variational Prolems with Concentration, Progr. Nonlinear Differential Equations Appl., 36, Birkhauser, Basel, 1999, 163 pp. | DOI | MR
[5] Gol'dstein V. M., Reshetnyak Yu. G., Introduction to the Theory of Functions with Generalized Derivatieves and Quasiconformal Mappings, Nauka, M., 1983, 284 pp. (in Russian) | MR
[6] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, Amer. Math. Soc., 1969, 676 pp. | DOI | MR | Zbl
[7] Hesse J., “A p-extremal length and p-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl
[8] Kalmykov S. I., Prilepkina E. G., “Extremal decomposition problems for p-harmonic radius”, Analysis Mathematica, 43:1 (2017), 49–65 | DOI | MR | Zbl
[9] Kichenassamy S., Veron L., “Singular Solutions of the p-Laplace Equation”, Math. Ann., 275 (1986), 599–615 ; Erratum: Math. Ann., 277:2 (1987), 352 | DOI | MR | Zbl | MR | Zbl
[10] Soviet Math. Dokl., 43:1 (1991), 189–192 | MR
[11] Levitskii B. E., Miklyukov V. M., “The reduced module on the surface”, Vestn. Tomsk. Gos. Univ., 301 (2007), 87–91 (in Russian)
[12] Levitskii B. E., Mityuk I. P., ““Narrow” theorems on spatial modules”, Dokl. Akad. Nauk SSSR, 248:4 (1979), 780–783 (in Russian) | MR
[13] Maz'ja V. G., Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, 486 pp. | DOI | MR | Zbl
[14] Mityuk I. P., “Generalized reduced module and some of its applications”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2, 110–119 (in Russian) | MR | Zbl
[15] Mostow G. D., “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. Inst. Hautes Etudes Sci., 34 (1968), 53–104 | DOI | MR | Zbl
[16] Shlyk V. A., “The equality between p-capacity and p-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl
[17] Teichmuller O., “Untersuchungen über konforme und quasikonforme Abbildungen”, Deutsche Math., 1938, no. 3, 621–678
[18] Wang W., “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1 (2007), 155–174 | DOI | MR | Zbl
[19] Yanushauskas A. I., Three-dimensional Analogs of Conformal mappings, Nauka, Novosibirsk, 1982, 173 pp. (in Russian) | MR | Zbl