Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings
Problemy analiza, Tome 7 (2018) no. 2, pp. 82-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the definitions and properties of the metric characteristics of the spatial domains previously introduced by the author, and their connection with the class of mappings, the particular case of which are the harmonic Green's mappings introduced by A. I. Janushauskas. In determining these mappings, the role of the harmonic Green's function is played by the $p$-harmonic Green's function of the $n$-dimensional region ($1$), the existence and properties of which are established by S. Kichenassamy and L. Veron. The properties of $p$-harmonic Green mappings established in the general case are analogous to the properties of harmonic Green's mappings ($p = 2$, $n = 3$). In particular, it is proved that the $p$-harmonic radius of the spatial domain has a geometric meaning analogous to the conformal radius of a plane domain.
Keywords: reduced $p$-modulus, $p$-harmonic inner radius, $p$-harmonic Green function, $p$-harmonic Green's mapping.
@article{PA_2018_7_2_a5,
     author = {B. E. Levitskii},
     title = {Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic {Green's} mappings},
     journal = {Problemy analiza},
     pages = {82--97},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/}
}
TY  - JOUR
AU  - B. E. Levitskii
TI  - Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings
JO  - Problemy analiza
PY  - 2018
SP  - 82
EP  - 97
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/
LA  - en
ID  - PA_2018_7_2_a5
ER  - 
%0 Journal Article
%A B. E. Levitskii
%T Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings
%J Problemy analiza
%D 2018
%P 82-97
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/
%G en
%F PA_2018_7_2_a5
B. E. Levitskii. Reduced $p$-modulus, $p$-harmonic radius and $p$-harmonic Green's mappings. Problemy analiza, Tome 7 (2018) no. 2, pp. 82-97. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a5/

[1] Russian Math. (Iz. VUZ), 50:10 (2006), 8–16 | MR

[2] Dubinin V. N., “Capacities and Geometric Transformations of Subsets in n-Space”, Geom. Funct. Anal., 33:4 (1993), 342–369 | DOI | MR

[3] Dubinin V. N., Condenser capacities and symmetrization in geometric function theory, Birkhauser/Springer, Basel, 2014, 344 pp. | MR | Zbl

[4] Flucher M., Variational Prolems with Concentration, Progr. Nonlinear Differential Equations Appl., 36, Birkhauser, Basel, 1999, 163 pp. | DOI | MR

[5] Gol'dstein V. M., Reshetnyak Yu. G., Introduction to the Theory of Functions with Generalized Derivatieves and Quasiconformal Mappings, Nauka, M., 1983, 284 pp. (in Russian) | MR

[6] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Translations of Mathematical Monographs, Amer. Math. Soc., 1969, 676 pp. | DOI | MR | Zbl

[7] Hesse J., “A p-extremal length and p-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[8] Kalmykov S. I., Prilepkina E. G., “Extremal decomposition problems for p-harmonic radius”, Analysis Mathematica, 43:1 (2017), 49–65 | DOI | MR | Zbl

[9] Kichenassamy S., Veron L., “Singular Solutions of the p-Laplace Equation”, Math. Ann., 275 (1986), 599–615 ; Erratum: Math. Ann., 277:2 (1987), 352 | DOI | MR | Zbl | MR | Zbl

[10] Soviet Math. Dokl., 43:1 (1991), 189–192 | MR

[11] Levitskii B. E., Miklyukov V. M., “The reduced module on the surface”, Vestn. Tomsk. Gos. Univ., 301 (2007), 87–91 (in Russian)

[12] Levitskii B. E., Mityuk I. P., ““Narrow” theorems on spatial modules”, Dokl. Akad. Nauk SSSR, 248:4 (1979), 780–783 (in Russian) | MR

[13] Maz'ja V. G., Sobolev Spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, 486 pp. | DOI | MR | Zbl

[14] Mityuk I. P., “Generalized reduced module and some of its applications”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 2, 110–119 (in Russian) | MR | Zbl

[15] Mostow G. D., “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms”, Publ. Math. Inst. Hautes Etudes Sci., 34 (1968), 53–104 | DOI | MR | Zbl

[16] Shlyk V. A., “The equality between p-capacity and p-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[17] Teichmuller O., “Untersuchungen über konforme und quasikonforme Abbildungen”, Deutsche Math., 1938, no. 3, 621–678

[18] Wang W., “N-Capacity, N-harmonic radius and N-harmonic transplantation”, J. Math. Anal. Appl., 327:1 (2007), 155–174 | DOI | MR | Zbl

[19] Yanushauskas A. I., Three-dimensional Analogs of Conformal mappings, Nauka, Novosibirsk, 1982, 173 pp. (in Russian) | MR | Zbl