Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_2_a2, author = {V. A. Gorelov}, title = {On contiguity relations for generalized hypergeometric functions}, journal = {Problemy analiza}, pages = {39--46}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a2/} }
V. A. Gorelov. On contiguity relations for generalized hypergeometric functions. Problemy analiza, Tome 7 (2018) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a2/
[1] Andrews G., Askey R., Roy R., Special Functions, Cambridge University Press, 2000 ; MCNMO, M., 2013 | MR | Zbl
[2] Bateman H., Erdélyi A., Higher transcendental functions, v. 1, The hypergeometric function, Legendre functions, McGraw-Hill, New York–Toronto–London, 1953; Nauka, M., 1965 | Zbl
[3] Beukers F., Brownawell W. D., Heckman G., “Siegel normality”, Annals of Math., 127, 1988, 279–308 | DOI | MR | Zbl
[4] Bytev V. V., Kalmykov M. Yu., Kniehl B. A., “HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions ${}_{p}F_{p-1},\,F_1,\,F_2,\,F_3,\,F_4$”, Computer Physics Communications, 184 (2013), 2332–2342 | DOI | MR
[5] Gorelov V. A., “On the algebraic independence of values of generalized hypergeometric functions”, Mathematical Notes, 94:1 (2013), 82–95 | DOI | MR | Zbl
[6] Luke Y., Mathematical functions and their approximations, Academic Press, New York, 1975 ; Mir, M., 1980 | MR | Zbl | Zbl
[7] Salikhov V. Kh., “Formal solutions of linear differential equations and their application in the theory of transcendental numbers”, Trans. Moscow Math. Soc., 1989, 219–251 | MR | Zbl
[8] Shidlovskii A. B., Transcendental numbers, Nauka, M., 1987 ; Walter de Gruyter, Berlin–New York, 1989 | MR | Zbl
[9] Slater L. J., Generalized Hypergeometric Functions, Cambridge University Press, London–New York, 1966 | MR | Zbl
[10] Viskina G. G., Salikhov V. Kh., “Algebraic relations between hypergeometric E-function and its derivatives”, Mathematical Notes, 71:6 (2002), 761–772 | DOI | MR | Zbl