On the almost periodic at infinity functions from homogeneous spaces
Problemy analiza, Tome 7 (2018) no. 2, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogeneous spaces of functions defined on the real axis (or semi-axis) with values in a complex Banach space. We study the new class of almost periodic at infinity functions from homogeneous spaces. The main results of the article are connected to harmonic analysis of those functions. We give four definitions of an almost periodic at infinity function from a homogeneous space and prove them to be equivalent. We also introduce the concept of a Fourier series with slowly varying at infinity coefficients (neither necessarily constant nor necessarily having a limit at infinity). It is proved that the Fourier coefficients of almost periodic at infinity function from a homogeneous space (not necessarily continuous) can be chosen continuous. Moreover, they can be extended on $\mathbb{C}$ to bounded entire functions of exponential type. Besides, we prove the summability of Fourier series by the method of Bochner–Fejer. The results were received with essential use of isometric representations and Banach modules theory.
Keywords: almost periodic at infinity function, homogeneous space, Banach module, almost periodic vector, Fourier series.
@article{PA_2018_7_2_a0,
     author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova},
     title = {On the almost periodic at infinity functions from homogeneous spaces},
     journal = {Problemy analiza},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - V. E. Strukov
AU  - I. I. Strukova
TI  - On the almost periodic at infinity functions from homogeneous spaces
JO  - Problemy analiza
PY  - 2018
SP  - 3
EP  - 19
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/
LA  - en
ID  - PA_2018_7_2_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A V. E. Strukov
%A I. I. Strukova
%T On the almost periodic at infinity functions from homogeneous spaces
%J Problemy analiza
%D 2018
%P 3-19
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/
%G en
%F PA_2018_7_2_a0
A. G. Baskakov; V. E. Strukov; I. I. Strukova. On the almost periodic at infinity functions from homogeneous spaces. Problemy analiza, Tome 7 (2018) no. 2, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/

[1] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2011 | MR | Zbl

[2] Baskakov A. G., Harmonic Analysis in Banach Modules and the Spectral Theory of Linear Operators, Izdat. Dom VGU, Voronezh, 2016 | MR

[3] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | MR | Zbl

[4] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | MR | Zbl

[5] Baskakov A. G., “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci., 137:4 (2006), 4885–5036 | DOI | MR

[6] Baskakov A. G., “Spectral criteria for almost periodicity of solutions of functional equations”, Math. Notes, 24:2 (1978), 606–612 | DOI | MR

[7] Baskakov A. G., Some Problems of the Theory of Vector Almost Periodic Functions, Diss. Kand. Fiz.-Mat. Nauk, Voronezh, 1973 | MR

[8] Baskakov A. G., Kaluzhina N. S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | MR | Zbl

[9] Baskakov A. G., Krishtal I. A., “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl

[10] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl

[11] Baskakov A., Obukhovskii V., Zecca P., “Almost periodic solutions at infinity of differential equations and inclusions”, Siberian Math. J., 462:1 (2018), 747–763 | DOI | MR | Zbl

[12] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR

[13] Baskakov A. G., Strukova I. I., Trishina I. A., “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 55:2 (2018), 231–242 | DOI | MR

[14] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 2, Springer-Verlag, New York, 1975

[15] Levitan B. M., Zhikov V. V., Almost-Periodic Functions and Differential Equations, Izdat. MGU, M., 1978 | MR | Zbl

[16] Strukova I. I., “Harmonic analysis of periodic at infinity functions in homogeneous spaces”, Science Journal of Volgograd State University. Mathematics. Physics, 39:2 (2017), 29–38 | DOI | MR

[17] Strukova I. I., “On Wiener's theorem for functions periodic at infinity”, Siberian Math. J., 57:1 (2016), 145–154 | DOI | MR | Zbl

[18] Strukova I. I., “Spectra of algebras of slowly varying and periodic at infinity functions and Banach limits”, Proc. Voronezh State Univ. Ser. Physics. Mathematics, 2015, no. 3, 161–165 | MR | Zbl

[19] Strukova I. I., “Harmonic analysis of periodic vectors and functions periodic at infinity”, J. Math. Sci., 211:6 (2015), 874–885 | DOI | MR