Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_2_a0, author = {A. G. Baskakov and V. E. Strukov and I. I. Strukova}, title = {On the almost periodic at infinity functions from homogeneous spaces}, journal = {Problemy analiza}, pages = {3--19}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/} }
TY - JOUR AU - A. G. Baskakov AU - V. E. Strukov AU - I. I. Strukova TI - On the almost periodic at infinity functions from homogeneous spaces JO - Problemy analiza PY - 2018 SP - 3 EP - 19 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/ LA - en ID - PA_2018_7_2_a0 ER -
A. G. Baskakov; V. E. Strukov; I. I. Strukova. On the almost periodic at infinity functions from homogeneous spaces. Problemy analiza, Tome 7 (2018) no. 2, pp. 3-19. http://geodesic.mathdoc.fr/item/PA_2018_7_2_a0/
[1] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser, Basel, 2011 | MR | Zbl
[2] Baskakov A. G., Harmonic Analysis in Banach Modules and the Spectral Theory of Linear Operators, Izdat. Dom VGU, Voronezh, 2016 | MR
[3] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | MR | Zbl
[4] Baskakov A. G., “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | MR | Zbl
[5] Baskakov A. G., “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci., 137:4 (2006), 4885–5036 | DOI | MR
[6] Baskakov A. G., “Spectral criteria for almost periodicity of solutions of functional equations”, Math. Notes, 24:2 (1978), 606–612 | DOI | MR
[7] Baskakov A. G., Some Problems of the Theory of Vector Almost Periodic Functions, Diss. Kand. Fiz.-Mat. Nauk, Voronezh, 1973 | MR
[8] Baskakov A. G., Kaluzhina N. S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | MR | Zbl
[9] Baskakov A. G., Krishtal I. A., “Spectral analysis of abstract parabolic operators in homogeneous function spaces”, Mediterranean Journal of Mathematics, 13:5 (2016), 2443–2462 | DOI | MR | Zbl
[10] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl
[11] Baskakov A., Obukhovskii V., Zecca P., “Almost periodic solutions at infinity of differential equations and inclusions”, Siberian Math. J., 462:1 (2018), 747–763 | DOI | MR | Zbl
[12] Baskakov A., Strukova I., “Harmonic analysis of functions periodic at infinity”, Eurasian Math. J., 7:4 (2016), 9–29 | MR
[13] Baskakov A. G., Strukova I. I., Trishina I. A., “Solutions almost periodic at infinity to differential equations with unbounded operator coefficients”, Siberian Math. J., 55:2 (2018), 231–242 | DOI | MR
[14] Hewitt E., Ross K., Abstract Harmonic Analysis, v. 2, Springer-Verlag, New York, 1975
[15] Levitan B. M., Zhikov V. V., Almost-Periodic Functions and Differential Equations, Izdat. MGU, M., 1978 | MR | Zbl
[16] Strukova I. I., “Harmonic analysis of periodic at infinity functions in homogeneous spaces”, Science Journal of Volgograd State University. Mathematics. Physics, 39:2 (2017), 29–38 | DOI | MR
[17] Strukova I. I., “On Wiener's theorem for functions periodic at infinity”, Siberian Math. J., 57:1 (2016), 145–154 | DOI | MR | Zbl
[18] Strukova I. I., “Spectra of algebras of slowly varying and periodic at infinity functions and Banach limits”, Proc. Voronezh State Univ. Ser. Physics. Mathematics, 2015, no. 3, 161–165 | MR | Zbl
[19] Strukova I. I., “Harmonic analysis of periodic vectors and functions periodic at infinity”, J. Math. Sci., 211:6 (2015), 874–885 | DOI | MR