Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2018_7_1_a5, author = {Saminathan Ponnusamy and Karl-Joachim Wirths}, title = {Coefficient problems on the class $U(\lambda)$}, journal = {Problemy analiza}, pages = {87--103}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/} }
Saminathan Ponnusamy; Karl-Joachim Wirths. Coefficient problems on the class $U(\lambda)$. Problemy analiza, Tome 7 (2018) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/
[1] Aksentév L. A., “Sufficient conditions for univalence of regular functions”, Izv. Vysš. Učebn. Zaved. Matematika, 1958, no. 3(4), 3–7 (in Russia) | MR | Zbl
[2] Aksentév L. A., Avhadiev F. G., “A certain class of univalent functions”, Izv. Vysš. Učebn. Zaved. Matematika, 1970, no. 10, 12–20 (in Russian) | MR | Zbl
[3] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009, 15 pp. | MR | Zbl
[4] Boas H. P., “Julius and Julia: Mastering the art of the Schwarz lemma”, Amer. Math. Monthly, 117 (2010), 770–785 | DOI | MR | Zbl
[5] de Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154 (1985), 137–152 | DOI | MR | Zbl
[6] Clunie J. G., “Some remarks on extreme points in function theory”, Aspects of Contemporary Complex Analysis, Proc. NATO Adv. Study Inst., University of Durham, Durham, UK, 1979; Academic Press, London, 1980, 137 pp.
[7] Duren P. L., Univalent functions, Springer-Verlag, 1983 | MR | Zbl
[8] Fournier R., Ponnusamy S., “A class of locally univalent functions defined by a differential inequality”, Complex Var. Elliptic Equ., 52:1 (2007), 1–8 | DOI | MR | Zbl
[9] Friedman B., “Two theorems on schlicht functions”, Duke Math. J., 13 (1946), 171–177 | DOI | MR | Zbl
[10] Goodman A. W., Univalent functions, v. 1–2, Mariner, Tampa, Florida, 1983 | MR
[11] Hallenbeck D. J., Ruscheweyh St., “Subordination by convex functions”, Proc. Amer. Math. Soc., 52 (1975), 191–195 | DOI | MR | Zbl
[12] Jack I. S., “Functions starlike and convex of order $\alpha$”, J. London Math. Soc., 3:2 (1971), 469–474 | DOI | MR | Zbl
[13] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and Applications, Marcel Dekker, New York–Basel, 2000 | MR | Zbl
[14] Obradović M., Ponnusamy S., “New criteria and distortion theorems for univalent functions”, Complex Variables: Theory and Appl., 44 (2001), 173–191 | DOI | MR | Zbl
[15] Obradović M., Ponnusamy S., “Radius properties for subclasses of univalent functions”, Analysis, 25 (2005), 183–188 | DOI | MR | Zbl
[16] Obradović M., Ponnusamy S., “Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions”, J. Math. Anal. Appl., 336 (2007), 758–767 | DOI | MR | Zbl
[17] Obradović M., Ponnusamy S., “On certain subclasses of univalent functions and radius properties”, Rev. Roumanie Math. Pures Appl., 54:4 (2009), 317–329 | MR | Zbl
[18] Obradović M., Ponnusamy S., Singh V., Vasundhra P., “Univalency, starlikesess and convexity applied to certain classes of rational functions”, Analysis, 22:3 (2002), 225–242 | DOI | MR | Zbl
[19] Obradović M., Ponnusamy S., Wirths K.-J., “Geometric studies on the class U($\lambda$)”, Bull. Malaysian Math. Sci. Soc., 39:3 (2016), 1259–1284 | DOI | MR | Zbl
[20] Obradović M., Ponnusamy S., Wirths K.-J., “On relations between the classes $\mathcal{S}$ and $\mathcal{U}$”, J. Analysis, 24 (2016), 83–93 | DOI | MR | Zbl
[21] Obradović M., Ponnusamy S., Wirths K.-J., “Logarithmic coefficients and a coefficient conjecture of univalent functions”, Monatsh. Math., 185:3 (2018), 489–501 | DOI | MR | Zbl
[22] Ponnusamy S., Wirths K.-J., “Elementary considerations for classes of meromorphic univalent functions”, Lobachevskii J. Math., 39:5 (2018), 712–715 | DOI
[23] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl
[24] Rogosinski W., “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48:2 (1943), 48–82 | DOI | MR | Zbl
[25] Silverman H., “Univalent functions with negative coefficicents”, Proc. Amer. Math. Soc., 51 (1975), 109–116 | DOI | MR | Zbl
[26] Vasudevarao A., Yanagihara H., “On the growth of analytic functions in the class $\mathcal{U}(\lambda)$”, Comput. Methods Funct. Theory, 13 (2013), 613–634 | DOI | MR | Zbl