Coefficient problems on the class $U(\lambda)$
Problemy analiza, Tome 7 (2018) no. 1, pp. 87-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $0\lambda \leq 1$, let ${\mathcal U}(\lambda)$ denote the family of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ analytic in the unit disk $\mathbb{D}$ satisfying the condition $\left |\left (\frac{z}{f(z)}\right )^{2}f'(z)-1\right |\lambda $ in $\mathbb{D}$. Although functions in this family are known to be univalent in $\mathbb{D}$, the coefficient conjecture about $a_n$ for $n\geq 5$ remains an open problem. In this article, we shall first present a non-sharp bound for $|a_n|$. Some members of the family ${\mathcal U}(\lambda)$ are given by $$ \frac{z}{f(z)}=1-(1+\lambda)\phi(z) + \lambda (\phi(z))^2 $$ with $\phi(z)=e^{i\theta}z$, that solve many extremal problems in ${\mathcal U}(\lambda)$. Secondly, we shall consider the following question: Do there exist functions $\phi$ analytic in $\mathbb{D}$ with $|\phi (z)|1$ that are not of the form $\phi(z)=e^{i\theta}z$ for which the corresponding functions $f$ of the above form are members of the family ${\mathcal U}(\lambda)$? Finally, we shall solve the second coefficient ($a_2$) problem in an explicit form for $f\in {\mathcal U}(\lambda)$ of the form $$f(z) =\frac{z}{1-a_2z+\lambda z\int\limits_0^z\omega(t)\,dt}, $$ where $\omega$ is analytic in $\mathbb{D}$ such that $|\omega(z)|\leq 1$ and $\omega(0)=a$, where $a\in \overline{\mathbb{D}}$.
Keywords: Univalent function; subordination; Julia's lemma; Schwarz' lemma.
@article{PA_2018_7_1_a5,
     author = {Saminathan Ponnusamy and Karl-Joachim Wirths},
     title = {Coefficient problems on the class $U(\lambda)$},
     journal = {Problemy analiza},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/}
}
TY  - JOUR
AU  - Saminathan Ponnusamy
AU  - Karl-Joachim Wirths
TI  - Coefficient problems on the class $U(\lambda)$
JO  - Problemy analiza
PY  - 2018
SP  - 87
EP  - 103
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/
LA  - en
ID  - PA_2018_7_1_a5
ER  - 
%0 Journal Article
%A Saminathan Ponnusamy
%A Karl-Joachim Wirths
%T Coefficient problems on the class $U(\lambda)$
%J Problemy analiza
%D 2018
%P 87-103
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/
%G en
%F PA_2018_7_1_a5
Saminathan Ponnusamy; Karl-Joachim Wirths. Coefficient problems on the class $U(\lambda)$. Problemy analiza, Tome 7 (2018) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/

[1] Aksentév L. A., “Sufficient conditions for univalence of regular functions”, Izv. Vysš. Učebn. Zaved. Matematika, 1958, no. 3(4), 3–7 (in Russia) | MR | Zbl

[2] Aksentév L. A., Avhadiev F. G., “A certain class of univalent functions”, Izv. Vysš. Učebn. Zaved. Matematika, 1970, no. 10, 12–20 (in Russian) | MR | Zbl

[3] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009, 15 pp. | MR | Zbl

[4] Boas H. P., “Julius and Julia: Mastering the art of the Schwarz lemma”, Amer. Math. Monthly, 117 (2010), 770–785 | DOI | MR | Zbl

[5] de Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154 (1985), 137–152 | DOI | MR | Zbl

[6] Clunie J. G., “Some remarks on extreme points in function theory”, Aspects of Contemporary Complex Analysis, Proc. NATO Adv. Study Inst., University of Durham, Durham, UK, 1979; Academic Press, London, 1980, 137 pp.

[7] Duren P. L., Univalent functions, Springer-Verlag, 1983 | MR | Zbl

[8] Fournier R., Ponnusamy S., “A class of locally univalent functions defined by a differential inequality”, Complex Var. Elliptic Equ., 52:1 (2007), 1–8 | DOI | MR | Zbl

[9] Friedman B., “Two theorems on schlicht functions”, Duke Math. J., 13 (1946), 171–177 | DOI | MR | Zbl

[10] Goodman A. W., Univalent functions, v. 1–2, Mariner, Tampa, Florida, 1983 | MR

[11] Hallenbeck D. J., Ruscheweyh St., “Subordination by convex functions”, Proc. Amer. Math. Soc., 52 (1975), 191–195 | DOI | MR | Zbl

[12] Jack I. S., “Functions starlike and convex of order $\alpha$”, J. London Math. Soc., 3:2 (1971), 469–474 | DOI | MR | Zbl

[13] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and Applications, Marcel Dekker, New York–Basel, 2000 | MR | Zbl

[14] Obradović M., Ponnusamy S., “New criteria and distortion theorems for univalent functions”, Complex Variables: Theory and Appl., 44 (2001), 173–191 | DOI | MR | Zbl

[15] Obradović M., Ponnusamy S., “Radius properties for subclasses of univalent functions”, Analysis, 25 (2005), 183–188 | DOI | MR | Zbl

[16] Obradović M., Ponnusamy S., “Univalence and starlikeness of certain integral transforms defined by convolution of analytic functions”, J. Math. Anal. Appl., 336 (2007), 758–767 | DOI | MR | Zbl

[17] Obradović M., Ponnusamy S., “On certain subclasses of univalent functions and radius properties”, Rev. Roumanie Math. Pures Appl., 54:4 (2009), 317–329 | MR | Zbl

[18] Obradović M., Ponnusamy S., Singh V., Vasundhra P., “Univalency, starlikesess and convexity applied to certain classes of rational functions”, Analysis, 22:3 (2002), 225–242 | DOI | MR | Zbl

[19] Obradović M., Ponnusamy S., Wirths K.-J., “Geometric studies on the class U($\lambda$)”, Bull. Malaysian Math. Sci. Soc., 39:3 (2016), 1259–1284 | DOI | MR | Zbl

[20] Obradović M., Ponnusamy S., Wirths K.-J., “On relations between the classes $\mathcal{S}$ and $\mathcal{U}$”, J. Analysis, 24 (2016), 83–93 | DOI | MR | Zbl

[21] Obradović M., Ponnusamy S., Wirths K.-J., “Logarithmic coefficients and a coefficient conjecture of univalent functions”, Monatsh. Math., 185:3 (2018), 489–501 | DOI | MR | Zbl

[22] Ponnusamy S., Wirths K.-J., “Elementary considerations for classes of meromorphic univalent functions”, Lobachevskii J. Math., 39:5 (2018), 712–715 | DOI

[23] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl

[24] Rogosinski W., “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48:2 (1943), 48–82 | DOI | MR | Zbl

[25] Silverman H., “Univalent functions with negative coefficicents”, Proc. Amer. Math. Soc., 51 (1975), 109–116 | DOI | MR | Zbl

[26] Vasudevarao A., Yanagihara H., “On the growth of analytic functions in the class $\mathcal{U}(\lambda)$”, Comput. Methods Funct. Theory, 13 (2013), 613–634 | DOI | MR | Zbl