Coefficient problems on the class $U(\lambda)$
Problemy analiza, Tome 7 (2018) no. 1, pp. 87-103

Voir la notice de l'article provenant de la source Math-Net.Ru

For $0\lambda \leq 1$, let ${\mathcal U}(\lambda)$ denote the family of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ analytic in the unit disk $\mathbb{D}$ satisfying the condition $\left |\left (\frac{z}{f(z)}\right )^{2}f'(z)-1\right |\lambda $ in $\mathbb{D}$. Although functions in this family are known to be univalent in $\mathbb{D}$, the coefficient conjecture about $a_n$ for $n\geq 5$ remains an open problem. In this article, we shall first present a non-sharp bound for $|a_n|$. Some members of the family ${\mathcal U}(\lambda)$ are given by $$ \frac{z}{f(z)}=1-(1+\lambda)\phi(z) + \lambda (\phi(z))^2 $$ with $\phi(z)=e^{i\theta}z$, that solve many extremal problems in ${\mathcal U}(\lambda)$. Secondly, we shall consider the following question: Do there exist functions $\phi$ analytic in $\mathbb{D}$ with $|\phi (z)|1$ that are not of the form $\phi(z)=e^{i\theta}z$ for which the corresponding functions $f$ of the above form are members of the family ${\mathcal U}(\lambda)$? Finally, we shall solve the second coefficient ($a_2$) problem in an explicit form for $f\in {\mathcal U}(\lambda)$ of the form $$f(z) =\frac{z}{1-a_2z+\lambda z\int\limits_0^z\omega(t)\,dt}, $$ where $\omega$ is analytic in $\mathbb{D}$ such that $|\omega(z)|\leq 1$ and $\omega(0)=a$, where $a\in \overline{\mathbb{D}}$.
Keywords: Univalent function; subordination; Julia's lemma; Schwarz' lemma.
@article{PA_2018_7_1_a5,
     author = {Saminathan Ponnusamy and Karl-Joachim Wirths},
     title = {Coefficient problems on the class $U(\lambda)$},
     journal = {Problemy analiza},
     pages = {87--103},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/}
}
TY  - JOUR
AU  - Saminathan Ponnusamy
AU  - Karl-Joachim Wirths
TI  - Coefficient problems on the class $U(\lambda)$
JO  - Problemy analiza
PY  - 2018
SP  - 87
EP  - 103
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/
LA  - en
ID  - PA_2018_7_1_a5
ER  - 
%0 Journal Article
%A Saminathan Ponnusamy
%A Karl-Joachim Wirths
%T Coefficient problems on the class $U(\lambda)$
%J Problemy analiza
%D 2018
%P 87-103
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/
%G en
%F PA_2018_7_1_a5
Saminathan Ponnusamy; Karl-Joachim Wirths. Coefficient problems on the class $U(\lambda)$. Problemy analiza, Tome 7 (2018) no. 1, pp. 87-103. http://geodesic.mathdoc.fr/item/PA_2018_7_1_a5/