On the projections of mutual $L^{q,t}$-spectrum
Problemy analiza, Tome 6 (2017) no. 2, pp. 94-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we are interested in the mutual $L^{q,t}$-spectrum relatively to two Borel probability measures having the same compact support and also in the study of their behavior under orthogonal projections.
Keywords: mutual multifractal analysis.
Mots-clés : orthogonal projection, dimension spectra
@article{PA_2017_6_2_a5,
     author = {B. Selmi and N. Yu. Svetova},
     title = {On the projections of mutual $L^{q,t}$-spectrum},
     journal = {Problemy analiza},
     pages = {94--108},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a5/}
}
TY  - JOUR
AU  - B. Selmi
AU  - N. Yu. Svetova
TI  - On the projections of mutual $L^{q,t}$-spectrum
JO  - Problemy analiza
PY  - 2017
SP  - 94
EP  - 108
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_2_a5/
LA  - en
ID  - PA_2017_6_2_a5
ER  - 
%0 Journal Article
%A B. Selmi
%A N. Yu. Svetova
%T On the projections of mutual $L^{q,t}$-spectrum
%J Problemy analiza
%D 2017
%P 94-108
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_2_a5/
%G en
%F PA_2017_6_2_a5
B. Selmi; N. Yu. Svetova. On the projections of mutual $L^{q,t}$-spectrum. Problemy analiza, Tome 6 (2017) no. 2, pp. 94-108. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a5/