Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials
Problemy analiza, Tome 6 (2017) no. 2, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N$ be a natural number greater than $1$. Select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In this article approximation of functions by the polynomials $L_{n,N}(f,x)$ is considered. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign}\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimation $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from the well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimation $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform with respect to $1 \leq n \leq N/2$. Moreover, we found a local estimation $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform with respect to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimation $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform with respect to $1 \leq n \leq N/2$. The proofs of these estimations are based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
@article{PA_2017_6_2_a0,
     author = {G. G. Akniyev},
     title = {Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials},
     journal = {Problemy analiza},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_2_a0/}
}
TY  - JOUR
AU  - G. G. Akniyev
TI  - Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials
JO  - Problemy analiza
PY  - 2017
SP  - 3
EP  - 24
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_2_a0/
LA  - en
ID  - PA_2017_6_2_a0
ER  - 
%0 Journal Article
%A G. G. Akniyev
%T Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials
%J Problemy analiza
%D 2017
%P 3-24
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_2_a0/
%G en
%F PA_2017_6_2_a0
G. G. Akniyev. Discrete least squares approximation of piecewise-linear functions by trigonometric polynomials. Problemy analiza, Tome 6 (2017) no. 2, pp. 3-24. http://geodesic.mathdoc.fr/item/PA_2017_6_2_a0/

[1] Bernshtein S. N., “On trigonometric interpolation by the method of least squares”, Dokl. Akad. Nauk USSR, 4 (1934), 1–5 (in Russian)

[2] Courant R., Differential and Integral Calculus, v. 1, Wiley-Interscience, New Jersey, 1988, 704 pp. | MR

[3] Erdös P., “Some theorems and remarks on interpolation”, Acta Sci. Math. (Szeged), 12 (1950), 11–17 | MR | Zbl

[4] Fikhtengol'ts G. M., Course of differential and integral calculus, v. 1, Fizmatlit, M., 1969, 656 pp. (in Russian)

[5] Kalashnikov M. D., “On polynomials of best (quadratic) approximation on a given system of points”, Dokl. Akad. Nauk USSR, 105 (1955), 634–636 (in Russian) | MR

[6] Krilov V. I., “Convergence of algebraic interpolation with respect to the roots of a Chebyshev polynomial for absolutely continuous functions and functions with bounded variation”, Dokl. Akad. Nauk USSR, 107 (1956), 362–365 (in Russian) | MR

[7] Magomed-Kasumov M. G., “Approximation properties of de la Valle-Poussin means for piecewise smooth functions”, Mat. Zametki, 100:2 (2016), 229–244 | DOI | MR | Zbl

[8] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 127–130 (in French)

[9] Marcinkiewicz J., “Sur la divergence des polynômes d'interpolation”, Acta Sci. Math. (Szeged), 8 (1936), 131–135 (in French)

[10] Natanson I. P., “On the Convergence of Trigonometrical Interpolation at Equi-Distant Knots”, Annals of Mathematics, Second Series, 45:3 (1944), 457–471 | DOI | MR | Zbl

[11] Nikol'skii S. M., “On some methods of approximation by trigonometric sums”, Mathematics of the USSR–Izvestiya, 4 (1940), 509–520 (in Russian)

[12] Šarapudinov I. I., “On the best approximation and polynomials of the least quadratic deviation”, Anal. Math., 9:3, 223–234 | MR

[13] Zygmund A., Trigonometric Series, v. 1, Cambridge University Press, Cambridge, 1959, 747 pp. | MR | Zbl