Extension of starlike functions to a finitely punctured plane
Problemy analiza, Tome 6 (2017) no. 1, pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a sequence of functions which are starlike in the unit disk and their logarithmic derivatives are meromorphic with a finite number of simple poles in any boundary domain. These poles are either boundary deterministic or random with given characteristics. The aim of the article is the limit process and properties of the limit functions. We distinguish conditions for residues and distribution of poles. Under certain conditions, the sequence converges to the identity function. Another conditions allow us to obtain estimates for the limit function and its logarithmic derivative.
Keywords: starlike function, meromorphic function, weight, deterministic point regulation, uniform distribution.
@article{PA_2017_6_1_a5,
     author = {D. V. Prokhorov},
     title = {Extension of starlike functions to a finitely punctured plane},
     journal = {Problemy analiza},
     pages = {58--67},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a5/}
}
TY  - JOUR
AU  - D. V. Prokhorov
TI  - Extension of starlike functions to a finitely punctured plane
JO  - Problemy analiza
PY  - 2017
SP  - 58
EP  - 67
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a5/
LA  - en
ID  - PA_2017_6_1_a5
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%T Extension of starlike functions to a finitely punctured plane
%J Problemy analiza
%D 2017
%P 58-67
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a5/
%G en
%F PA_2017_6_1_a5
D. V. Prokhorov. Extension of starlike functions to a finitely punctured plane. Problemy analiza, Tome 6 (2017) no. 1, pp. 58-67. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a5/

[1] Schramm O., “Scaling limits of loop-erased random walks and uniform spanning trees”, Israel J. Math., 118 (2000), 221–288 | DOI | MR | Zbl

[2] Lawler G. F., Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, 114, American Mathematical Society, 2005 | MR | Zbl

[3] Duren P. L., Univalent Functions, Springer-Verlag, 1983 | MR | Zbl

[4] Ivanov G., Kang N.-G., Vasil'ev A., “Slit holomorphic stochastic flows and Gaussian free field”, Complex Anal. Oper. Theory, 10:7 (2016), 1591–1617 | DOI | MR | Zbl

[5] Bracci F., Contreras M. D., Díaz-Madrigal S., Vasil'ev A., “Classical and stochastic Löwner-Kufarev equations”, Harmonic and Complex Analysis and its Applications, Trends Math., Birkhäuser, ed. Vasil'ev A., 2013, 39–134 | DOI | MR

[6] Ivanov G., Vasil'ev A., “Löwner evolution driven by a stochastic boundary point”, Anal. Math. Phys., 1:4 (2011), 387–412 | DOI | MR | Zbl

[7] Baddeley A., “Spatial point patterns: models and statistics”, Stochastic geometry, spatial statistics and random fields, Lecture Notes Math., 2068, ed. Spodarev E., Springer, 2013, 49–114 | DOI | MR | Zbl

[8] Daley D. J., Vere-Jones D., An Introduction to the Theory of Point Processes, v. II, General Theory and Structure, Springer Science and Business Media, 2007 | MR

[9] Kingman J. F. C., Poisson Processes, Clarendon Press, 1992 | MR

[10] Baddeley A., Bárány I., Schneider R., Stochastic Geometry, Lectures given at the C. I. M. E. Summer School (Martina Franca, Italy, Sept., 13–18, 2004), Springer, 2006 | MR

[11] Baccelli F., Blaszczyszyn B., Stochastic Geometry and Wireless Networks, Now Publisher Inc., 2009

[12] Prokhorov D., “Functions with a Poisson configuration of singular points”, Function Theory, its Applications and Related Topics, Abstracts XII Kazan International Summer Scientific Conference (Kazan, June, 27–July, 4), 2015, 357–359