Extension of the refined Gibbs' inequality
Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we give an extension of the refined Gibbs' inequality containing arithmetic and geometric means. As an application, we obtain converse and refinement of the arithmetic-geometric mean inequality.
Keywords: arithmetic-geometric mean inequality, Jensen's inequality, log-function, Gibbs' inequality.
@article{PA_2017_6_1_a0,
     author = {V. Adiyasuren and Ts. Batbold},
     title = {Extension of the refined {Gibbs'} inequality},
     journal = {Problemy analiza},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/}
}
TY  - JOUR
AU  - V. Adiyasuren
AU  - Ts. Batbold
TI  - Extension of the refined Gibbs' inequality
JO  - Problemy analiza
PY  - 2017
SP  - 3
EP  - 10
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
LA  - en
ID  - PA_2017_6_1_a0
ER  - 
%0 Journal Article
%A V. Adiyasuren
%A Ts. Batbold
%T Extension of the refined Gibbs' inequality
%J Problemy analiza
%D 2017
%P 3-10
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
%G en
%F PA_2017_6_1_a0
V. Adiyasuren; Ts. Batbold. Extension of the refined Gibbs' inequality. Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/

[1] Adiyasuren V., Batbold Ts., Adil Khan M., “Refined arithmetic-geometric mean inequality and new entropy upper bound”, Commun. Korean Math. Soc., 31:1 (2016), 95–100 | DOI | MR | Zbl

[2] Alzer H., “On an inequality from information theory”, Rend. Istit. Mat. Univ. Trieste, 46 (2012), 231–235 | MR

[3] Beckenbach E. F., Bellman R., Inequalities, Springer Verlag, Berlin, 1983 | MR | Zbl

[4] Bullen P. S., Mitrinović D. S., Vasić P. M., Means and their inequalities, Reidel, Dordrecht, 1988 | MR | Zbl

[5] Gao P., “A new approach to Ky Fan-type inequalities”, Int. J. Math. Math. Sci., 2005, no. 22, 3551–3574 | DOI | MR | Zbl

[6] Halliwell G. T., Mercer P. R., “A refinement of an inequality from information theory”, J. Inequal. Pure Appl. Math., 5:1 (2004), 1–3 | MR | Zbl

[7] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1954 | MR

[8] Mitrinović D. S., Analytic inequalities, Springer Verlag, New York, 1970 | MR | Zbl

[9] Parkash O., Kakkar P., “Entropy bounds using arithmetic-geometricharmonic mean inequality”, Int. J. Pure Appl. Math., 89:5 (2013), 719–730 | DOI

[10] Simic S., “Jensen's inequality and new entropy bounds”, Appl. Math. Lett., 22 (2009), 1262–1265 | DOI | MR | Zbl

[11] Tian J., “New property of a generalized Hölder's inequality and its applications”, Information Sciences, 288 (2014), 45–54 | DOI | MR | Zbl