Extension of the refined Gibbs' inequality
Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note, we give an extension of the refined Gibbs' inequality containing arithmetic and geometric means. As an application, we obtain converse and refinement of the arithmetic-geometric mean inequality.
Keywords: arithmetic-geometric mean inequality, Jensen's inequality, log-function, Gibbs' inequality.
@article{PA_2017_6_1_a0,
     author = {V. Adiyasuren and Ts. Batbold},
     title = {Extension of the refined {Gibbs'} inequality},
     journal = {Problemy analiza},
     pages = {3--10},
     year = {2017},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/}
}
TY  - JOUR
AU  - V. Adiyasuren
AU  - Ts. Batbold
TI  - Extension of the refined Gibbs' inequality
JO  - Problemy analiza
PY  - 2017
SP  - 3
EP  - 10
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
LA  - en
ID  - PA_2017_6_1_a0
ER  - 
%0 Journal Article
%A V. Adiyasuren
%A Ts. Batbold
%T Extension of the refined Gibbs' inequality
%J Problemy analiza
%D 2017
%P 3-10
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
%G en
%F PA_2017_6_1_a0
V. Adiyasuren; Ts. Batbold. Extension of the refined Gibbs' inequality. Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/

[1] Adiyasuren V., Batbold Ts., Adil Khan M., “Refined arithmetic-geometric mean inequality and new entropy upper bound”, Commun. Korean Math. Soc., 31:1 (2016), 95–100 | DOI | MR | Zbl

[2] Alzer H., “On an inequality from information theory”, Rend. Istit. Mat. Univ. Trieste, 46 (2012), 231–235 | MR

[3] Beckenbach E. F., Bellman R., Inequalities, Springer Verlag, Berlin, 1983 | MR | Zbl

[4] Bullen P. S., Mitrinović D. S., Vasić P. M., Means and their inequalities, Reidel, Dordrecht, 1988 | MR | Zbl

[5] Gao P., “A new approach to Ky Fan-type inequalities”, Int. J. Math. Math. Sci., 2005, no. 22, 3551–3574 | DOI | MR | Zbl

[6] Halliwell G. T., Mercer P. R., “A refinement of an inequality from information theory”, J. Inequal. Pure Appl. Math., 5:1 (2004), 1–3 | MR | Zbl

[7] Hardy G. H., Littlewood J. E., Pólya G., Inequalities, Cambridge University Press, Cambridge, 1954 | MR

[8] Mitrinović D. S., Analytic inequalities, Springer Verlag, New York, 1970 | MR | Zbl

[9] Parkash O., Kakkar P., “Entropy bounds using arithmetic-geometricharmonic mean inequality”, Int. J. Pure Appl. Math., 89:5 (2013), 719–730 | DOI

[10] Simic S., “Jensen's inequality and new entropy bounds”, Appl. Math. Lett., 22 (2009), 1262–1265 | DOI | MR | Zbl

[11] Tian J., “New property of a generalized Hölder's inequality and its applications”, Information Sciences, 288 (2014), 45–54 | DOI | MR | Zbl