Extension of the refined Gibbs' inequality
Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note, we give an extension of the refined Gibbs' inequality containing arithmetic and geometric means. As an application, we obtain converse and refinement of the arithmetic-geometric mean inequality.
Keywords: arithmetic-geometric mean inequality, Jensen's inequality, log-function, Gibbs' inequality.
@article{PA_2017_6_1_a0,
     author = {V. Adiyasuren and Ts. Batbold},
     title = {Extension of the refined {Gibbs'} inequality},
     journal = {Problemy analiza},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/}
}
TY  - JOUR
AU  - V. Adiyasuren
AU  - Ts. Batbold
TI  - Extension of the refined Gibbs' inequality
JO  - Problemy analiza
PY  - 2017
SP  - 3
EP  - 10
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
LA  - en
ID  - PA_2017_6_1_a0
ER  - 
%0 Journal Article
%A V. Adiyasuren
%A Ts. Batbold
%T Extension of the refined Gibbs' inequality
%J Problemy analiza
%D 2017
%P 3-10
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/
%G en
%F PA_2017_6_1_a0
V. Adiyasuren; Ts. Batbold. Extension of the refined Gibbs' inequality. Problemy analiza, Tome 6 (2017) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/PA_2017_6_1_a0/