Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2016_5_2_a3, author = {Bilel Selmi}, title = {A note on the effect of projections on both measures and the generalization of $q$-dimension capacity}, journal = {Problemy analiza}, pages = {38--51}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/} }
Bilel Selmi. A note on the effect of projections on both measures and the generalization of $q$-dimension capacity. Problemy analiza, Tome 5 (2016) no. 2, pp. 38-51. http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/
[1] Barral J., Bhouri I., “Multifractal analysis for projections of Gibbs and related measures”, Ergod. Th. Dynam. Sys., 31 (2011), 673–701 | DOI | MR | Zbl
[2] Douzi Z., Selmi B., “Multifractal variation for projections of measures”, Chaos Solitons Fractals, 91 (2016), 414–420 | DOI | MR
[3] Falconer K. J., Howroyd J., “Packing Dimensions of Projections and Dimensions Profiles”, Math. Proc. Cambridge Philos. Soc., 121 (1997), 269–286 | DOI | MR | Zbl
[4] Falconer K. J., Howroyd J., “Projection theorems for box and packing dimensions”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 287–295 | DOI | MR | Zbl
[5] Falconer K. J., Mattila P., “The packing dimensions of projections and sections of measures”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 695–713 | DOI | MR | Zbl
[6] Kaufmann R., “On Hausdorff dimension of projections”, Mathematika, 15 (1968), 153–155 | DOI | MR
[7] Marstrand J. M., “Some fundamental geometrical properties of plane sets of fractional dimensions”, Proc. Lond. Math. Soc., 3 (1954), 257–302 | DOI | MR | Zbl
[8] Mattila P., “Hausdorff dimension. Orthogonal projections and intersections with planes”, Ann. Acad. Sci. Fenn. Ser., A I Math., 1 (1975), 227–244 | DOI | MR | Zbl
[9] O'Neil T., “The multifractal spectrum of projected measures in Euclidean spaces”, Chaos Solitons Fractals, 11 (2000), 901–921 | DOI | MR | Zbl
[10] Falconer K. J., “Fractal Geometry”, Math. Found. Appl., 1990, 27–37 | MR
[11] Hunt B. R., Kaloshin V. Y., “How projections affect the dimension spectrum of fractal measures”, Nonlinearity, 10 (1997), 1031–1046 | DOI | MR | Zbl
[12] Bahroun F., Bhouri I., “Multifractals and projections”, Extr. Math., 21 (2006), 83–91 | MR | Zbl
[13] Mattila P., The Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud. Adv. Math., 1995 | MR
[14] Mattila P., “Orthogonal projections, Riez capacities and minkowski contents”, Ind. Univ. Math. J., 39 (1990), 185–197 | DOI | MR
[15] Bayart F., “Multifractal spectra of typical and prevalent measures”, Nonlinearity, 26 (2013), 353–367 | DOI | MR | Zbl
[16] Hunt B. R., Kaloshin V. Y., “The effect pical and prevalent measures”, Nonlinearity, 26 (2013), 353–367 | DOI | MR
[17] Olsen L., “A multifractal formalism”, Adv. Math., 116 (1995), 82–196 | DOI | MR | Zbl
[18] Olsen L., “Mixed generalized dimensions of self-similar measures”, J. Math. Anal. Appl., 306 (2005), 516–539 | DOI | MR | Zbl
[19] Olsen L., “Typical $L^q$-Dimensions of Measures”, Monatsh. Math., 146 (2005), 143–157 | DOI | MR | Zbl
[20] Olsen L., “Typical upper $L^q$-dimensions of measures for $q\in[0, 1]$”, Bull. Sci. math., a132 (2008), 551–561 | DOI | MR | Zbl
[21] Shi Y., Dai M., “Typical Lower $L^q$-dimensions of Measures for $q \le 1$”, Int. J. Nonlinear Sci., 7 (2009), 231–236 | MR | Zbl
[22] Cole J., “Relative multifractal analysis”, Chaos Solitons Fractals, 11 (2000), 2233–2250 | DOI | MR | Zbl
[23] Cole J., Olsen L., “Multifractal variation measures and multifractal density theorems”, Real. Anal. Exchange, 28 (2003), 501–514 | MR | Zbl
[24] Svetova N. Yu., “The relative Renyi dimention”, Probl. Anal. Issues Anal., 1 (2012), 15–23 | DOI | MR | Zbl
[25] Dai M., Li Y., “A multifractal formalism in a probability space”, Chaos Solitons Fractals, 27 (2006), 57–73 | DOI | MR | Zbl
[26] Dai M., “The equivalence of measures on Moran set in general metric space”, Chaos Solitons Fractals, 29 (2006), 55–64 | DOI | MR | Zbl
[27] Dai M., Li Y., “Multifractal dimension inequalities in a probability space”, Chaos Solitons Fractals, 34 (2007), 213–223 | DOI | MR | Zbl
[28] Dai M., Peng X., Li W., “Relative Multifractal Analysis in a Probability Space”, Int. J. Nonlinear Sci., 10 (2010), 313–319 | MR | Zbl
[29] Dai M., Jiang Y., “The equivalence of multifractal measures on cookie-cutter-like sets”, Chaos Solitons Fractals, 41 (2009), 1408–1415 | DOI | MR | Zbl
[30] Naschie E., “The Fractal dimension of spacetime-remarks on theoretical derivation and experimental verification”, Chaos Solitons Fractals, 9 (1998), 1211–1217 | DOI | MR | Zbl
[31] Naschie E., “Remarks on superstrings, fractal gravity, Nagasawas diffusion and Cantorian spacetime”, Chaos Solitons Fractals, 8 (1997), 187–386 | DOI | MR
[32] Naschie E., “The Bethe lattice and the dimension of micro-spacetime”, Chaos Solitons Fractals, 8 (1997), 1873–1886 | DOI | MR | Zbl
[33] Naschie E., “Silver mean Hausdorff dimension and Cantor sets”, Chaos Solitons Fractals, 4 (1994), 170–186
[34] Naschie E., “Average symmetry stability and ergodicity of multi-dimensional Cantor sets, II”, Nuo Cim., 109 (1994), 149–157 | DOI
[35] Ord G., Nottale L., Naschie E., “The impact of nonlinear dynamics and fractals on quantum physics and relativity”, Chaos Solitons Fractals, 9 (1998), 100–110 | MR
[36] Frostman O., “Potential dequilibre et capacit des ensembles avec quelques applications à la thorie des fonctions Meddel”, Lunds Univ. Math. Sem., 3 (1935), 1–118
[37] Gol'dshtein V., Troyanov M., “Capacities on metric spaces”, Integral Equations Oper. Theory, 44 (2002), 212–242 | DOI | MR | Zbl
[38] Nuutinen J., Silvestre P., The Riesz capacity in metric spaces, 2015, arXiv: 1501.05746v2
[39] Lehrback J., Shanmugalingam N., Quasiadditivity of variational capacity, 2012, arXiv: 1211.6933v1 | MR