A note on the effect of projections on both measures and the generalization of $q$-dimension capacity
Problemy analiza, Tome 5 (2016) no. 2, pp. 38-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we are concerned both with the properties of the generalization of the $L^q$-spectrum relatively to two Borel probability measures and with the generalized $q$-dimension Riesz capacity. We are also interested in the study of their behaviors under orthogonal projections.
Keywords: orthogonal projection; Hausdorff measure and dimension; capacity; dimension spectra.
@article{PA_2016_5_2_a3,
     author = {Bilel Selmi},
     title = {A note on the effect of projections on both measures and the generalization of $q$-dimension capacity},
     journal = {Problemy analiza},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/}
}
TY  - JOUR
AU  - Bilel Selmi
TI  - A note on the effect of projections on both measures and the generalization of $q$-dimension capacity
JO  - Problemy analiza
PY  - 2016
SP  - 38
EP  - 51
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/
LA  - en
ID  - PA_2016_5_2_a3
ER  - 
%0 Journal Article
%A Bilel Selmi
%T A note on the effect of projections on both measures and the generalization of $q$-dimension capacity
%J Problemy analiza
%D 2016
%P 38-51
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/
%G en
%F PA_2016_5_2_a3
Bilel Selmi. A note on the effect of projections on both measures and the generalization of $q$-dimension capacity. Problemy analiza, Tome 5 (2016) no. 2, pp. 38-51. http://geodesic.mathdoc.fr/item/PA_2016_5_2_a3/