Quasi-isometric mappings and the $p$-moduli of path families
Problemy analiza, Tome 5 (2016) no. 2, pp. 33-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study a connection between quasiisometric mappings of $n$-dimensional domains and the $p$-moduli of path families. In particular, we obtain explicit (and sharp) estimates for the distortion of the $p$-moduli of path families under $K$-quasi-isometric mappings.
Keywords: $p$-modulus of path families; $p$-capacity of the condenser; quasi-isometric mappings.
@article{PA_2016_5_2_a2,
     author = {A. P. Kopylov},
     title = {Quasi-isometric mappings and the $p$-moduli of path families},
     journal = {Problemy analiza},
     pages = {33--37},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/}
}
TY  - JOUR
AU  - A. P. Kopylov
TI  - Quasi-isometric mappings and the $p$-moduli of path families
JO  - Problemy analiza
PY  - 2016
SP  - 33
EP  - 37
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/
LA  - en
ID  - PA_2016_5_2_a2
ER  - 
%0 Journal Article
%A A. P. Kopylov
%T Quasi-isometric mappings and the $p$-moduli of path families
%J Problemy analiza
%D 2016
%P 33-37
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/
%G en
%F PA_2016_5_2_a2
A. P. Kopylov. Quasi-isometric mappings and the $p$-moduli of path families. Problemy analiza, Tome 5 (2016) no. 2, pp. 33-37. http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/

[1] Quasiconformal mappings and Sobolev spaces, Mathematics and Its Applications: Soviet Series, 54, Kluwer Academic Publishers, Dordrecht etc., 1990 | MR | MR | Zbl

[2] Gehring F. W., “Lipschitz mappings and the p-capacity of rings in n-space”, Advances in the theory of Riemann surfaces, Proc. Conf. (Stony Brook, N.Y., 1969), Ann. of Math. Studies, 66, Princeton Univ. Press, Princeton, N.J., 1971 | MR

[3] Golberg A., “Quasiisometry from different points of view”, J. Math. Sci. (N.Y.), 196:5 (2014), 617–631 | DOI | MR | Zbl

[4] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in Modern Mapping Theory, Springer Science+Business Media, LLC, New York, 2009 | DOI | MR | Zbl

[5] Martio O., Ryazanov V., Srebro U., Yakubov E., “Mappings with finite length distortion”, J. Anal. Math., 93 (2004), 215–236 | DOI | MR | Zbl

[6] Salimov R. R., Sevost'yanov E. A., “The Poletskii and Väisälä inequalities for the mappings with $(p,q)$-distortion”, Complex Variables and Elliptic Equations, 59:2 (2014), 217–231 | DOI | MR | Zbl

[7] Salimov R. R., Sevost'yanov E. A., “ACL and differentiability of open discrete ring $(p, Q)$-mappings”, Matematychni studii, 35:1 (2011), 28–36 | MR | Zbl

[8] Sevost'yanov E. A., “The Väisälä inequality for mappings with finite length distortion”, Complex Variables and Elliptic Equations, 55:1–3 (2010), 91–101 | DOI | MR | Zbl

[9] Salimov R. R., Sevost'yanov E. A., “ACL and differentiability of the open discrete ring mappings”, Complex Variables and Elliptic Equations, 55:1–3 (2010), 49–59 | DOI | MR | Zbl

[10] Shlyk V. A., “The equality between p-capacity and p-modulus”, Sib. Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[11] Sobolev spaces, Springer-Verlag, Berlin etc. | MR | Zbl | Zbl

[12] Väisälä J., “On quasiconformal mappings in space”, Ann. Acad. Sci. Fenn., Ser. A I, 298 (1961), 1–36 | MR

[13] Fuglede B., “Extremal length and functional completion”, Acta Math., 98:1 (1957), 171–219 | DOI | MR | Zbl

[14] Väisälä J., Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | DOI | MR | Zbl