Quasi-isometric mappings and the $p$-moduli of path families
Problemy analiza, Tome 5 (2016) no. 2, pp. 33-37

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study a connection between quasiisometric mappings of $n$-dimensional domains and the $p$-moduli of path families. In particular, we obtain explicit (and sharp) estimates for the distortion of the $p$-moduli of path families under $K$-quasi-isometric mappings.
Keywords: $p$-modulus of path families; $p$-capacity of the condenser; quasi-isometric mappings.
@article{PA_2016_5_2_a2,
     author = {A. P. Kopylov},
     title = {Quasi-isometric mappings and the $p$-moduli of path families},
     journal = {Problemy analiza},
     pages = {33--37},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/}
}
TY  - JOUR
AU  - A. P. Kopylov
TI  - Quasi-isometric mappings and the $p$-moduli of path families
JO  - Problemy analiza
PY  - 2016
SP  - 33
EP  - 37
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/
LA  - en
ID  - PA_2016_5_2_a2
ER  - 
%0 Journal Article
%A A. P. Kopylov
%T Quasi-isometric mappings and the $p$-moduli of path families
%J Problemy analiza
%D 2016
%P 33-37
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/
%G en
%F PA_2016_5_2_a2
A. P. Kopylov. Quasi-isometric mappings and the $p$-moduli of path families. Problemy analiza, Tome 5 (2016) no. 2, pp. 33-37. http://geodesic.mathdoc.fr/item/PA_2016_5_2_a2/