On the Schwarzian norm of harmonic mappings
Problemy analiza, Tome 5 (2016) no. 2, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimations of the pre-Schwarzian and Schwarzian derivatives in terms of the order of family in linear and affine invariant families $\mathcal{L}$ of sense preserving harmonic mappings of the unit disk $\mathbb{D}$. As the converse result the order of family $\mathcal{L}$ is estimated in terms of suprema of Schwarzian and pre-Schwarzian norms over the family $\mathcal{L}$. Main results are obtained by means of theory of linear invariant families.
Keywords: harmonic mappings; linear invariant families; Schwarzian derivative.
@article{PA_2016_5_2_a1,
     author = {S. Yu. Graf},
     title = {On the {Schwarzian} norm of harmonic mappings},
     journal = {Problemy analiza},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_2_a1/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - On the Schwarzian norm of harmonic mappings
JO  - Problemy analiza
PY  - 2016
SP  - 20
EP  - 32
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_2_a1/
LA  - en
ID  - PA_2016_5_2_a1
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T On the Schwarzian norm of harmonic mappings
%J Problemy analiza
%D 2016
%P 20-32
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_2_a1/
%G en
%F PA_2016_5_2_a1
S. Yu. Graf. On the Schwarzian norm of harmonic mappings. Problemy analiza, Tome 5 (2016) no. 2, pp. 20-32. http://geodesic.mathdoc.fr/item/PA_2016_5_2_a1/

[1] Duren P., Univalent functions, Springer-Verlag, N.Y., 1983, 395 pp. | MR | Zbl

[2] Krauss W., “Über den Zusammenhang einiger Charakteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Geissen, 21 (1932), 1–28

[3] Nehari Z., “The Schwarzian derivatives and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[4] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13 (1962), 1975–1978 | DOI | MR

[5] Chuaqui M., Duren P., Osgood B., “The Schwarzian derivative for harmonic mappings”, J. Anal. Math., 91 (2003), 329–351 | DOI | MR | Zbl

[6] Hernández R., Martín M. J., “Pre-Schwarzian and Schwarzian Derivatives of Harmonic Mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl

[7] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., s2-42 (1990), 237–248 | DOI | MR | Zbl

[8] Pommerenke Ch., “Linear-invariante Familien analytischer Functionen. I”, Math. Ann., 155:2 (1964), 108–154 | DOI | MR | Zbl

[9] Schaubroeck L. E., “Subordination of planar harmonic functions”, Complex Var. Elliptic Equ., 41 (2000), 163–178 | DOI | MR | Zbl

[10] Sobczak-Knec M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 65:2 (2011), 191–202 | MR | Zbl

[11] Graf S. Yu., Eyelangoli O. R., “Differential inequalities in linear- and affine- invariant families of harmonic mappings”, Russian Math. (Iz. VUZ), 55:10 (2010), 60–62 | DOI | MR

[12] Starkov V. V., “Application of the linear invariance idea in the theory of harmonic mappings. New order”, Modern problems of the function theory and their applications, Materials of the 12th Saratov conference, 2004, 173 (in Russian)

[13] Graf S. Yu., “An exact bound for the Jacobian in linear and affine invariant families of harmonic mappings”, Tr. Petrozavodsk. Univ. Ser. Matem., 14 (2008), 31–38 (in Russian) | MR

[14] Ganenkova E. G., Starkov V. V., “Regularity theorems for harmonic functions”, J. Appl. Anal., 21:1 (0003), 25–36 | DOI | MR

[15] Graf S. Yu., “To the theory of linear and affine invariant families of harmonic mappings”, Application of functional analysis in the approximation theory, 2012, no. 33, 12–40 (in Russian)

[16] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl

[17] Wang X.-T., Liang X.-O., Zhang Y.-L., “Precise coefficient estimates for close-to-convex harmonic univalent mappings”, J. Math. Anal. Appl., 263:2 (2001), 501–509 | DOI | MR | Zbl

[18] Golusin G. M., Geometrical function theory, M., 1966, 628 pp. (in Russian)