Coefficient inequality for multivalent bounded turning functions of order $\alpha$
Problemy analiza, Tome 5 (2016) no. 1, pp. 45-54

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to obtain the sharp upper bound to the $H_{2}(p+1)$, second Hankel determinant for $p$-valent (multivalent) analytic bounded turning functions (also called functions whose derivatives have positive real parts) of order $\alpha~ (0\leq\alpha1)$, using Toeplitz determinants. The result presented here includes three known results as their special cases.
Keywords: $p$-valent analytic function; bounded turning function; upper bound; Hankel determinant; positive real function; Toeplitz determinants.
@article{PA_2016_5_1_a3,
     author = {D. Vamshee Krishna and T. RamReddy},
     title = {Coefficient inequality for multivalent bounded turning functions of order $\alpha$},
     journal = {Problemy analiza},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/}
}
TY  - JOUR
AU  - D. Vamshee Krishna
AU  - T. RamReddy
TI  - Coefficient inequality for multivalent bounded turning functions of order $\alpha$
JO  - Problemy analiza
PY  - 2016
SP  - 45
EP  - 54
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/
LA  - en
ID  - PA_2016_5_1_a3
ER  - 
%0 Journal Article
%A D. Vamshee Krishna
%A T. RamReddy
%T Coefficient inequality for multivalent bounded turning functions of order $\alpha$
%J Problemy analiza
%D 2016
%P 45-54
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/
%G en
%F PA_2016_5_1_a3
D. Vamshee Krishna; T. RamReddy. Coefficient inequality for multivalent bounded turning functions of order $\alpha$. Problemy analiza, Tome 5 (2016) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/