Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2016_5_1_a3, author = {D. Vamshee Krishna and T. RamReddy}, title = {Coefficient inequality for multivalent bounded turning functions of order $\alpha$}, journal = {Problemy analiza}, pages = {45--54}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/} }
D. Vamshee Krishna; T. RamReddy. Coefficient inequality for multivalent bounded turning functions of order $\alpha$. Problemy analiza, Tome 5 (2016) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/
[1] de Branges de Bourcia J., “A proof of Bieberbach conjecture”, Acta Mathematica, 154:1–2 (1985), 137–152 | DOI | MR | Zbl
[2] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl
[3] Noonan J. W., Thomas D. K., “On the second Hankel determinant of areally mean $p$-valent functions”, Trans. Amer. Math. Soc., 223:2 (1976), 337–346 | MR | Zbl
[4] Noor K. I., “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roumaine Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl
[5] Layman J. W., “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl
[6] Ali R. M., “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., (second series), 26:1 (2003), 63–71 | MR | Zbl
[7] Janteng A., Halim S. A., Darus M., “Hankel Determinant for starlike and convex functions”, Int. J. Math. Anal. (Ruse), 1:13 (2007), 619–625 | MR | Zbl
[8] MacGregor T. H., “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl
[9] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR | Zbl
[10] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl
[11] Simon B., Orthogonal polynomials on the unit circle, v. 1, American mathematical society colloquium publications, 54, Classical theory, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[12] Grenander U., Szegö G., Toeplitz forms and their applications, 2nd ed., Chelsea Publishing Co., New York (NY), 1984 | MR | Zbl
[13] Libera R. J., Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87 (1983), 251–257 | MR | Zbl
[14] Vamshee Krishna D., RamReddy T., “Coefficient inequality for a function whose derivative has a positive real part of order alpha”, Mathematica Bohemica, 140:1 (2015), 43–52 | MR | Zbl
[15] Vamshee Krishna D., RamReddy T., “Coefficient inequality for certain $p$-valent analytic functions”, Rocky Mountain J. Math., 44:6 (2014), 1941–1959 | DOI | MR | Zbl