Coefficient inequality for multivalent bounded turning functions of order $\alpha$
Problemy analiza, Tome 5 (2016) no. 1, pp. 45-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this paper is to obtain the sharp upper bound to the $H_{2}(p+1)$, second Hankel determinant for $p$-valent (multivalent) analytic bounded turning functions (also called functions whose derivatives have positive real parts) of order $\alpha~ (0\leq\alpha1)$, using Toeplitz determinants. The result presented here includes three known results as their special cases.
Keywords: $p$-valent analytic function; bounded turning function; upper bound; Hankel determinant; positive real function; Toeplitz determinants.
@article{PA_2016_5_1_a3,
     author = {D. Vamshee Krishna and T. RamReddy},
     title = {Coefficient inequality for multivalent bounded turning functions of order $\alpha$},
     journal = {Problemy analiza},
     pages = {45--54},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/}
}
TY  - JOUR
AU  - D. Vamshee Krishna
AU  - T. RamReddy
TI  - Coefficient inequality for multivalent bounded turning functions of order $\alpha$
JO  - Problemy analiza
PY  - 2016
SP  - 45
EP  - 54
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/
LA  - en
ID  - PA_2016_5_1_a3
ER  - 
%0 Journal Article
%A D. Vamshee Krishna
%A T. RamReddy
%T Coefficient inequality for multivalent bounded turning functions of order $\alpha$
%J Problemy analiza
%D 2016
%P 45-54
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/
%G en
%F PA_2016_5_1_a3
D. Vamshee Krishna; T. RamReddy. Coefficient inequality for multivalent bounded turning functions of order $\alpha$. Problemy analiza, Tome 5 (2016) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/PA_2016_5_1_a3/

[1] de Branges de Bourcia J., “A proof of Bieberbach conjecture”, Acta Mathematica, 154:1–2 (1985), 137–152 | DOI | MR | Zbl

[2] Pommerenke Ch., “On the coefficients and Hankel determinants of univalent functions”, J. Lond. Math. Soc., 41 (1966), 111–122 | DOI | MR | Zbl

[3] Noonan J. W., Thomas D. K., “On the second Hankel determinant of areally mean $p$-valent functions”, Trans. Amer. Math. Soc., 223:2 (1976), 337–346 | MR | Zbl

[4] Noor K. I., “Hankel determinant problem for the class of functions with bounded boundary rotation”, Rev. Roumaine Math. Pures Appl., 28:8 (1983), 731–739 | MR | Zbl

[5] Layman J. W., “The Hankel transform and some of its properties”, J. Integer Seq., 4:1 (2001), 1–11 | MR | Zbl

[6] Ali R. M., “Coefficients of the inverse of strongly starlike functions”, Bull. Malays. Math. Sci. Soc., (second series), 26:1 (2003), 63–71 | MR | Zbl

[7] Janteng A., Halim S. A., Darus M., “Hankel Determinant for starlike and convex functions”, Int. J. Math. Anal. (Ruse), 1:13 (2007), 619–625 | MR | Zbl

[8] MacGregor T. H., “Functions whose derivative have a positive real part”, Trans. Amer. Math. Soc., 104:3 (1962), 532–537 | DOI | MR | Zbl

[9] Duren P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, USA, 1983 | MR | Zbl

[10] Pommerenke Ch., Univalent functions, Vandenhoeck and Ruprecht, Gottingen, 1975 | MR | Zbl

[11] Simon B., Orthogonal polynomials on the unit circle, v. 1, American mathematical society colloquium publications, 54, Classical theory, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[12] Grenander U., Szegö G., Toeplitz forms and their applications, 2nd ed., Chelsea Publishing Co., New York (NY), 1984 | MR | Zbl

[13] Libera R. J., Zlotkiewicz E. J., “Coefficient bounds for the inverse of a function with derivative in $\mathcal{P}$”, Proc. Amer. Math. Soc., 87 (1983), 251–257 | MR | Zbl

[14] Vamshee Krishna D., RamReddy T., “Coefficient inequality for a function whose derivative has a positive real part of order alpha”, Mathematica Bohemica, 140:1 (2015), 43–52 | MR | Zbl

[15] Vamshee Krishna D., RamReddy T., “Coefficient inequality for certain $p$-valent analytic functions”, Rocky Mountain J. Math., 44:6 (2014), 1941–1959 | DOI | MR | Zbl