About the equality of the transform of Laplace to the transform of Fourier
Problemy analiza, Tome 5 (2016) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We proved that the transform of Laplace does not have complex part on the complex axis for the wide class of functions in different situations. The main theorem is proved presenting a function as sum of two Laplace transforms. The transforms are defined in the left and right parts of the plain accordingly. Such presentation is proved to be unique. With help of the results we obtain equality of the transforms of Laplace and Fourier for some class of functions.
Keywords: Laplace transform; Fourier transforms; Dirichlet problem; new inverse of Laplace transform.
@article{PA_2016_5_1_a1,
     author = {A. V. Pavlov},
     title = {About the equality of the transform of {Laplace} to the transform of {Fourier}},
     journal = {Problemy analiza},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2016_5_1_a1/}
}
TY  - JOUR
AU  - A. V. Pavlov
TI  - About the equality of the transform of Laplace to the transform of Fourier
JO  - Problemy analiza
PY  - 2016
SP  - 21
EP  - 30
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2016_5_1_a1/
LA  - en
ID  - PA_2016_5_1_a1
ER  - 
%0 Journal Article
%A A. V. Pavlov
%T About the equality of the transform of Laplace to the transform of Fourier
%J Problemy analiza
%D 2016
%P 21-30
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2016_5_1_a1/
%G en
%F PA_2016_5_1_a1
A. V. Pavlov. About the equality of the transform of Laplace to the transform of Fourier. Problemy analiza, Tome 5 (2016) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/PA_2016_5_1_a1/

[1] Pavlov A. V., “The integrals of Poisson and Schwartz and the transformation of Laplace”, Intern. Jour. of Information Research and Review, 2:2 (2015), 394–400

[2] Pavlov A. V., “A new inversion formula for Laplace transforms and the notion of evenness”, Univer. Jour. of Appl. Math., 2:3 (2014), 148–152

[3] Pavlov A. V., “The new inversion of Laplace transform”, Jour. of Math. and Syst. Scien., 4:3 (2014), 197–201

[4] Pavlov A. V., “The Fourier, Laplace transformations and the Newton potential”, Amer. Jour. of Appl. Mathem. and Stat., 2:6 (2015), 398–401 | DOI

[5] Pavlov A. V., “Reliable prognosis of the functions in the form of transformations of Fourier or Laplace”, Herald of MIREA, Mosc. Inst. of Rad., Electr. and Autom. (Mosc. Tech. Univ.), 3:2 (2014), 78–85

[6] Pavlov A. V., “The Fourier transform and the formula of Laplace transforms”, Mathem. Notes, 90:6 (2011), 792–796 | MR

[7] Lavrentiev M. A., Shabat B. V., The methods of theory of functions of complex variable, Science, M., 1987, 688 pp.

[8] Davis B. J., Integral transforms and their applications, 3 edition, Springer Verlag, New York, 2002 | MR

[9] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Science, M., 1976, 544 pp. | MR

[10] Fichtenholz G. M., Course of differential and integral calculus, v. II, Science, M., 1969, 800 pp.