Certain properties of an operator involving subordination
Problemy analiza, Tome 4 (2015) no. 2, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of subordination can be traced back to Lindelöf since 1909, but other mathematicians like Littlewood (1925) and Rogosinski (1939) introduced the term and developed the basic theories. Subordination now plays an important role in complex analysis. The idea of univalent subordination can be stated as follows: Let $f$ and $g$ be analytic in $E$. Then $f$ is said to be subordinate to $g$, if $g$ is univalent in $E$, $f(0)=g(0)$ and $f(E)\subset g(E)$. We denote the subordination by $f\prec g$. Here, we apply a lemma of Miller and Mocanu to obtain a series of best possible subordination theorems. We also make use of an operator studied by Cho and Srivastava, and by Cho and Kim in this particular work. Thus, in this research work, we consider properties of an operator aforementioned involving subordinations with new results briefly highlighted.
Keywords: analytic function, hypergeometric functions.
Mots-clés : surbodination, Hadamard product
@article{PA_2015_4_2_a5,
     author = {A. P. Terwase and M. Darus},
     title = {Certain properties of an operator involving subordination},
     journal = {Problemy analiza},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a5/}
}
TY  - JOUR
AU  - A. P. Terwase
AU  - M. Darus
TI  - Certain properties of an operator involving subordination
JO  - Problemy analiza
PY  - 2015
SP  - 65
EP  - 72
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a5/
LA  - en
ID  - PA_2015_4_2_a5
ER  - 
%0 Journal Article
%A A. P. Terwase
%A M. Darus
%T Certain properties of an operator involving subordination
%J Problemy analiza
%D 2015
%P 65-72
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a5/
%G en
%F PA_2015_4_2_a5
A. P. Terwase; M. Darus. Certain properties of an operator involving subordination. Problemy analiza, Tome 4 (2015) no. 2, pp. 65-72. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a5/

[1] Miller S. S., Mocanu P. T., Differential Subordinations: Theory and Applications, Marcel Dekker, New York, NY, USA, 2000 | MR | Zbl

[2] Hallenbeck D. J., Ruscheweyh S. B., “Subordination by convex functions”, Proc. Amer. Math. Soc., 52 (1975), 191–195 | DOI | MR | Zbl

[3] Cho N. E., Srivastava H. M., “Argument estimates of certain analytic functions defined by a class of multiplier transformations”, Math. Comput. Modelling, 37:1 (2003), 39–49 | DOI | MR | Zbl

[4] Cho N. E., Kim T. H., “Multiplier transformations and strongly close-to-convex functions”, Bull. Korean Math. Soc., 40:3 (2003), 399–410 | DOI | MR | Zbl

[5] Flett T. M., “The dual of an inequality of Hardy and Littlewood and some related inequalities”, J. Math. Anal. Appl., 38 (1972), 746–765 | DOI | MR | Zbl

[6] Li J. L., Srivastava H. M., “Some inclusion properties of the class $P_\alpha(\beta)$”, Integral Transform and Spec. Funct., 8 (1999), 57–64 | DOI | MR | Zbl

[7] Bansal D., Raina R. K., “Some subordination theorems associated with a new operator”, Le Mathematiche, 25 (2010), 33–34 | MR

[8] Prajapat J. K., Raina R. K., “Subordination results for certain classes of multivalently analytic functions with a convulotion structure”, East Asian J. Math., 25 (2009), 267–276 | MR

[9] Abramowitz M., Stegan I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1971 | MR