Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_2_a3, author = {S. Yu. Graf}, title = {On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$}, journal = {Problemy analiza}, pages = {32--44}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/} }
S. Yu. Graf. On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$. Problemy analiza, Tome 4 (2015) no. 2, pp. 32-44. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/
[1] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Springer-Verlag, Berlin–Heidelberg–NY, 1971 | MR | Zbl
[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities an quasiconformal maps, New York, 1997
[3] Sychev A. V., Spatial quasiconformal mappings, Novosibirsk, 1975 (in Russian)
[4] Graf S. Yu., Eyelangoli O. R., “On the distortion of the moduli of the double connected domains under locally quasiconformal mappings”, Application of the functional analysis in the theory of approximation, Tver State University, 2009, 34–43 (in Russian)
[5] Graf S. Yu., “The growth theorems in the classes of normalized locally quasiconformal mappings”, Probl. Anal. Issues Anal., 2(20):2 (2013), 3–20 (in Russian) | DOI | MR | Zbl
[6] Graf S. Yu., “An analogue of the Schwarz lemma for locally quasiconformal automorphisms of the unit disk”, Russian Mathematics, 58:11 (2014), 74–79 | DOI | MR | Zbl
[7] Kolmogorov A. N., Fomin S. V., Elements of the function theory and functional analysis, M., 1989 (in Russian)
[8] Belinsky P. P., General properties of quasiconformal mappings, Novosibirsk, 1974 (in Russian)
[9] Brakalova M., Markina I., Vasilev A., Extremal functions for modules of systems of measures, 15 Sep. 2014, 49 pp., arXiv: 1409.1626v2 [math.CA] | MR
[10] Balogh Z. M., Fässler K., Platis I. D., “Modulus of curve families and extremality of spiral-stretch maps”, Journal d'analyse mathématique, 113 (2011), 265–291 | DOI | MR | Zbl
[11] Balogh Z. M., Fässler K., Platis I. D., “Modulus method and radial stretch map in the Heisenberg group”, Ann. Acad. Sci. Fenn., Mathematica, 38 (2013), 149–180 | DOI | MR | Zbl