On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$
Problemy analiza, Tome 4 (2015) no. 2, pp. 32-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some of the earlier results of author concerning distortion of the moduli of ring domains under planar locally quasiconformal mappings are generalized on the case of locally quasiconformal mappings in $\mathbb R^n$, $n\ge 2$. The main result of the article represents the sharp double-sided estimation of modulus $M(D)$ of the image $D$ of the concentric spherical ring $K(r,R)=\{x\in\in\mathbb R^n:\,r|x|$ under locally quasiconformal homeomorphism $f$: $$ \int^{R}_{r}P^{1/(1-n)}_f(t)\frac{dt}{t}\le Mod(D)\le \int^{R}_{r}P^{1/(n-1)}_f(t)\frac{dt}{t}. $$ Here the function $P_f$ is the majorant of dilatation of mapping $f$ and $P_f$ is well defined as $$ P_f(t)=\lim_{\varepsilon\to 0+}\operatorname{essup}\{p_f(x):\;t-\varepsilon\le|x|\le t+\varepsilon\}. $$ As the consequence of the main inequalities the sharp estimations of the derivative $f'(0)$ of the normalized locally quasiconformal automorphisms $f$ of the unit ball in the terms of majorant of the dilatation of function $f$ are proved. The sharpness of the results is demonstrated by examples of non-trivial locally quasiconformal mappings with unbounded dilatation that provide the equalities in estimations. The main theorems were obtained by means of method of moduli of families of curves and hypersurfaces in $\mathbb R^n$.
Keywords: locally quasiconformal mapping, modulus of ring domain.
@article{PA_2015_4_2_a3,
     author = {S. Yu. Graf},
     title = {On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$},
     journal = {Problemy analiza},
     pages = {32--44},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$
JO  - Problemy analiza
PY  - 2015
SP  - 32
EP  - 44
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/
LA  - en
ID  - PA_2015_4_2_a3
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$
%J Problemy analiza
%D 2015
%P 32-44
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/
%G en
%F PA_2015_4_2_a3
S. Yu. Graf. On distortion of the moduli of rings under locally quasiconformal mappings in $\mathbb R^{n}$. Problemy analiza, Tome 4 (2015) no. 2, pp. 32-44. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a3/

[1] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Springer-Verlag, Berlin–Heidelberg–NY, 1971 | MR | Zbl

[2] Anderson G. D., Vamanamurthy M. K., Vuorinen M., Conformal invariants, inequalities an quasiconformal maps, New York, 1997

[3] Sychev A. V., Spatial quasiconformal mappings, Novosibirsk, 1975 (in Russian)

[4] Graf S. Yu., Eyelangoli O. R., “On the distortion of the moduli of the double connected domains under locally quasiconformal mappings”, Application of the functional analysis in the theory of approximation, Tver State University, 2009, 34–43 (in Russian)

[5] Graf S. Yu., “The growth theorems in the classes of normalized locally quasiconformal mappings”, Probl. Anal. Issues Anal., 2(20):2 (2013), 3–20 (in Russian) | DOI | MR | Zbl

[6] Graf S. Yu., “An analogue of the Schwarz lemma for locally quasiconformal automorphisms of the unit disk”, Russian Mathematics, 58:11 (2014), 74–79 | DOI | MR | Zbl

[7] Kolmogorov A. N., Fomin S. V., Elements of the function theory and functional analysis, M., 1989 (in Russian)

[8] Belinsky P. P., General properties of quasiconformal mappings, Novosibirsk, 1974 (in Russian)

[9] Brakalova M., Markina I., Vasilev A., Extremal functions for modules of systems of measures, 15 Sep. 2014, 49 pp., arXiv: 1409.1626v2 [math.CA] | MR

[10] Balogh Z. M., Fässler K., Platis I. D., “Modulus of curve families and extremality of spiral-stretch maps”, Journal d'analyse mathématique, 113 (2011), 265–291 | DOI | MR | Zbl

[11] Balogh Z. M., Fässler K., Platis I. D., “Modulus method and radial stretch map in the Heisenberg group”, Ann. Acad. Sci. Fenn., Mathematica, 38 (2013), 149–180 | DOI | MR | Zbl