On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
Problemy analiza, Tome 4 (2015) no. 2, pp. 23-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic sets of functions in a polydisk domain of arbitrary connectivity are studied. We construct an example of such function, having preassigned asymptotic set. This result generalizes well-known examples, obtained by M. Heins and W. Gross for entire functions. Moreover, it is found out that not all results on asymptotic sets of functions in $\mathbb{C}$ can be extended to functions in $\mathbb{C}^n$. In particular, this fact is connected with the failure of Bagemihl's theorem on ambiguous points for functions in $\mathbb{R}^n,$ $n\geq 3$.
Keywords: asymptotic value, analytic set, ambiguous point.
@article{PA_2015_4_2_a2,
     author = {E. G. Ganenkova},
     title = {On asymptotic values of functions in a polydisk domain and {Bagemihl's} theorem},
     journal = {Problemy analiza},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
TI  - On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
JO  - Problemy analiza
PY  - 2015
SP  - 23
EP  - 31
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/
LA  - en
ID  - PA_2015_4_2_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%T On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
%J Problemy analiza
%D 2015
%P 23-31
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/
%G en
%F PA_2015_4_2_a2
E. G. Ganenkova. On asymptotic values of functions in a polydisk domain and Bagemihl's theorem. Problemy analiza, Tome 4 (2015) no. 2, pp. 23-31. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/