On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
Problemy analiza, Tome 4 (2015) no. 2, pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic sets of functions in a polydisk domain of arbitrary connectivity are studied. We construct an example of such function, having preassigned asymptotic set. This result generalizes well-known examples, obtained by M. Heins and W. Gross for entire functions. Moreover, it is found out that not all results on asymptotic sets of functions in $\mathbb{C}$ can be extended to functions in $\mathbb{C}^n$. In particular, this fact is connected with the failure of Bagemihl's theorem on ambiguous points for functions in $\mathbb{R}^n,$ $n\geq 3$.
Keywords: asymptotic value, analytic set, ambiguous point.
@article{PA_2015_4_2_a2,
     author = {E. G. Ganenkova},
     title = {On asymptotic values of functions in a polydisk domain and {Bagemihl's} theorem},
     journal = {Problemy analiza},
     pages = {23--31},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
TI  - On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
JO  - Problemy analiza
PY  - 2015
SP  - 23
EP  - 31
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/
LA  - en
ID  - PA_2015_4_2_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%T On asymptotic values of functions in a polydisk domain and Bagemihl's theorem
%J Problemy analiza
%D 2015
%P 23-31
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/
%G en
%F PA_2015_4_2_a2
E. G. Ganenkova. On asymptotic values of functions in a polydisk domain and Bagemihl's theorem. Problemy analiza, Tome 4 (2015) no. 2, pp. 23-31. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/

[1] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Cambridge Univ. Press, 1966 | MR | Zbl

[2] Hazewinkel M., Encyclopaedia of Mathematics, v. 1 (A–B), Kluwer Academic, Dordrecht, 1988

[3] Mazurkiewicz S., “Sur les points singuliers d'une fonction analytique”, Fund. Math., 17:1 (1931), 26–29

[4] Hausdorff F., Set theory, AMS Chelsea Publishing, 1957 | MR

[5] Sierpinski M., General topology, University of Toronto Press, 1952 | MR | Zbl

[6] Iversen F., Recherches sur les fonctions inverses des fonctions méromorphes, Imprimerie de la Société de littérature finnoise, Helsinki, 1914

[7] Goldberg A. A., Ostrovskii I. V., Value distributions of meromorphic functions, American Mathematical Society, Providence, R.I., 2008 | MR

[8] Gross W., “Eine ganze Funktion für die jede Komplexe Zahl Konvergenzwert ist”, Math. Ann., 79 (1918), 201–208 | DOI | MR | Zbl

[9] Heins M., “The set of asymptotic values of an entire function”, Proceedings of the Scandinavian Math. Congress (Lund, 1953), 1954, 56–60 | MR | Zbl

[10] Ganenkova E. G., Starkov V. V., “Asymptotic values of functions, analytic in planar domains”, Probl. Anal. Issues Anal., 2(20):1 (2013), 38–42 | DOI | MR | Zbl

[11] Ganenkova E. G., Starkov V. V., “Analytic in planar domains functions with preassigned asymptotic set”, J. Appl. Anal., 20:1 (2014), 7–14 | DOI | MR | Zbl

[12] Liczberski P., Starkov V. V., “On locally biholomorhic mappings from multiconnected onto simply connected domains”, Ann. Polon. Math., 85:2 (2005), 135–143 | DOI | MR | Zbl

[13] Bagemihl F., “Curvilinear cluster sets of arbitrary functions”, Proc. Natl. Acad. Sci. USA, 41:6 (1955), 379–382 | DOI | MR | Zbl

[14] Piranian G., “Ambiguous points of a function continuous inside a sphere”, Michigan Math. J., 4:2 (1957), 151–152 | DOI | MR | Zbl

[15] Bagemihl F., “Ambiguous points of a function harmonic inside a sphere”, Michigan Math. J., 4:2 (1957), 153–154 | DOI | MR | Zbl

[16] Church P. T., “Ambiguous points of a function homeomorphic inside a sphere”, Michigan Math. J., 4:2 (1957), 155–156 | DOI | MR | Zbl

[17] Rippon P. J., “Ambiguous points of functions in the unit ball of euclidean space”, Bull. Lond. Math. Soc., 15:4 (1983), 336–338 | DOI | MR | Zbl