Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_2_a2, author = {E. G. Ganenkova}, title = {On asymptotic values of functions in a polydisk domain and {Bagemihl's} theorem}, journal = {Problemy analiza}, pages = {23--31}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/} }
E. G. Ganenkova. On asymptotic values of functions in a polydisk domain and Bagemihl's theorem. Problemy analiza, Tome 4 (2015) no. 2, pp. 23-31. http://geodesic.mathdoc.fr/item/PA_2015_4_2_a2/
[1] Collingwood E. F., Lohwater A. J., The theory of cluster sets, Cambridge Univ. Press, 1966 | MR | Zbl
[2] Hazewinkel M., Encyclopaedia of Mathematics, v. 1 (A–B), Kluwer Academic, Dordrecht, 1988
[3] Mazurkiewicz S., “Sur les points singuliers d'une fonction analytique”, Fund. Math., 17:1 (1931), 26–29
[4] Hausdorff F., Set theory, AMS Chelsea Publishing, 1957 | MR
[5] Sierpinski M., General topology, University of Toronto Press, 1952 | MR | Zbl
[6] Iversen F., Recherches sur les fonctions inverses des fonctions méromorphes, Imprimerie de la Société de littérature finnoise, Helsinki, 1914
[7] Goldberg A. A., Ostrovskii I. V., Value distributions of meromorphic functions, American Mathematical Society, Providence, R.I., 2008 | MR
[8] Gross W., “Eine ganze Funktion für die jede Komplexe Zahl Konvergenzwert ist”, Math. Ann., 79 (1918), 201–208 | DOI | MR | Zbl
[9] Heins M., “The set of asymptotic values of an entire function”, Proceedings of the Scandinavian Math. Congress (Lund, 1953), 1954, 56–60 | MR | Zbl
[10] Ganenkova E. G., Starkov V. V., “Asymptotic values of functions, analytic in planar domains”, Probl. Anal. Issues Anal., 2(20):1 (2013), 38–42 | DOI | MR | Zbl
[11] Ganenkova E. G., Starkov V. V., “Analytic in planar domains functions with preassigned asymptotic set”, J. Appl. Anal., 20:1 (2014), 7–14 | DOI | MR | Zbl
[12] Liczberski P., Starkov V. V., “On locally biholomorhic mappings from multiconnected onto simply connected domains”, Ann. Polon. Math., 85:2 (2005), 135–143 | DOI | MR | Zbl
[13] Bagemihl F., “Curvilinear cluster sets of arbitrary functions”, Proc. Natl. Acad. Sci. USA, 41:6 (1955), 379–382 | DOI | MR | Zbl
[14] Piranian G., “Ambiguous points of a function continuous inside a sphere”, Michigan Math. J., 4:2 (1957), 151–152 | DOI | MR | Zbl
[15] Bagemihl F., “Ambiguous points of a function harmonic inside a sphere”, Michigan Math. J., 4:2 (1957), 153–154 | DOI | MR | Zbl
[16] Church P. T., “Ambiguous points of a function homeomorphic inside a sphere”, Michigan Math. J., 4:2 (1957), 155–156 | DOI | MR | Zbl
[17] Rippon P. J., “Ambiguous points of functions in the unit ball of euclidean space”, Bull. Lond. Math. Soc., 15:4 (1983), 336–338 | DOI | MR | Zbl