Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_1_a3, author = {K. Nantomah and E. Prempeh}, title = {Certain inequalities involving the $q$-deformed {Gamma} function}, journal = {Problemy analiza}, pages = {57--65}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a3/} }
K. Nantomah; E. Prempeh. Certain inequalities involving the $q$-deformed Gamma function. Problemy analiza, Tome 4 (2015) no. 1, pp. 57-65. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a3/
[1] Jackson F. H., “On a $q$-definite integrals”, Quarterly Journal of Pure and Applied Mathematics, 41 (1910), 193–203 | Zbl
[2] Askey R., “The $q$-Gamma and $q$-Beta Functions”, Applicable Anal., 8:2 (1978), 125–141 | DOI | MR | Zbl
[3] Chung W. S., Kim T., Mansour T., “The $q$-deformed Gamma function and $q$-deformed Polygamma function”, Bull. Korean Math. Soc., 51:4 (2014), 1155–1161 | DOI | MR | Zbl
[4] Ege I., Yýldýrým E., “Some generalized equalities for the $q$-gamma function”, Filomat, 12:6 (2012), 1221–1226 | DOI | MR
[5] Elmonster H., Brahim K., Fitouhi A., “Relationship between characterizations of the $q$-Gamma function”, Journal of Inequalities and Special Functions, 3:4 (2012), 50–58 | MR
[6] Shabani A. S., “Generalization of some inequalities for the $q$-gamma function”, Annales Mathematicae et Informaticae, 35 (2008), 129–134 | MR | Zbl
[7] Lew J., Frauenthal J., Keyfitz N., On the average distances in a circular disc. Mathematical Modeling: Classroom Notes in Applied Mathematics, SIAM, Philadelphia, 1987
[8] Sándor J., “On certain inequalities for the Gamma function”, RGMIA Res. Rep. Coll., 9:1 (2006), 11 | MR
[9] Wendel J. G., “Note on the gamma function”, Amer. Math. Monthly, 55 (1948), 563–564 | DOI | MR
[10] Qi F., Luo Q. M., Banach Journal of Mathematical Analysis, 6:2 (2012), Bounds for the ratio of two Gamma functions — from Wendel's and related inequalities to logarithmically completely monotonic functions | MR
[11] Ismail M. E. H., Muldoon M. E., Inequalities and monotonicity properties for Gamma and $q$-Gamma functions, arXiv: 1301.1749v1 | MR
[12] Mortici C., “A sharp inequality involving the psi function”, Acta Universitatis Apulensis, 22 (2010), 41–45 | MR
[13] Qi F., “Bounds for the ratio of two Gamma functions”, Journal of Inequalities and Applications, 2010, 493058 | MR | Zbl