Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PA_2015_4_1_a2, author = {E. G. Ganenkova and V. V. Starkov}, title = {On regularity theorems for linearly invariant families of harmonic functions}, journal = {Problemy analiza}, pages = {38--56}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/} }
E. G. Ganenkova; V. V. Starkov. On regularity theorems for linearly invariant families of harmonic functions. Problemy analiza, Tome 4 (2015) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/
[1] Hayman W. K., “Some applications of the transfinite diameter to the theory of functions”, J. Anal. Math., 1951, no. 1, 155–179 | DOI | MR | Zbl
[2] Krzyż J., “On the maximum modulus of univalent function”, Bull. Pol. Acad. Sci. Math., CI:3 (1955), 203–206 | MR
[3] Bieberbach L., Einführung in die konforme Abbildung, Sammlung Göschen, 768/786a, 1967 | MR
[4] Hayman W. K., Multivalent functions, Cambridge University Press, 1994 | MR | Zbl
[5] Pommerenke Ch., “Linear-invariante Familien analytischer Funktionen, I”, Math. Ann., 155 (1964), 108–154 | DOI | MR | Zbl
[6] Campbell D. M., “Applications and proofs of a uniqueness theorems for linear invariant families of finite order”, Rocky Mountain J. Math., 4:4 (1974), 621–634 | DOI | MR | Zbl
[7] Starkov V. V., “Regularity theorems for universal linearly invariant families of functions”, Serdica Math. J., 11:3 (1985), 299–318 (in Russian) | MR | Zbl
[8] Schaubroeck L. E., “Subordination of planar harmonic functions”, Complex Variables, 41:2 (2000), 163–178 | DOI | MR | Zbl
[9] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc. (2), 42:2 (1990), 237–248 | DOI | MR | Zbl
[10] Sobczak-Kneć M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, LXV (2012), 191–202 | DOI | MR
[11] Ganenkova E. G., Starkov V. V., “Regularity theorems for harmonic functions”, J. Appl. Anal., 21:1 (2014), 25–36 | DOI | MR
[12] Graf S. Yu., “Regularity theorems for Jacobian in linearly and affine invariant families of harmonic mappings”, Application of the functional analysis in the approximation theory, 2014, 10–21 (in Russian)
[13] Ganenkova E. G., “A theorem of decrease regularity in linearly invariant families of functions”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 13 (2006), 46–59 (in Russian) | MR
[14] Ganenkova E. G., “A theorem on the regularity of decrease in linearly invariant families of functions”, Russian Mathematics (Izvestiya VUZ. Matematika), 51:2 (2007), 71–74 | DOI | MR | Zbl
[15] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl
[16] Duren P., Harmonic mappings in the plane, Cambridge university press, 2004 | MR | Zbl
[17] Godula J., Starkov V. V., “Linear invariant families”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 5 (1998), 3–96 (in Russian) | MR