On regularity theorems for linearly invariant families of harmonic functions
Problemy analiza, Tome 4 (2015) no. 1, pp. 38-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical theorem of growth regularity in the class $S$ of analytic and univalent in the unit disc $\Delta$ functions $f$ describes the growth character of different functionals of $f\in S$ and $z\in \Delta$ as $z$ tends to $\partial\Delta.$ Earlier the authors proved the theorems of growth and decrease regularity for harmonic and sense-preserving in $\Delta$ functions which generalized the classical result for the class $S.$ In the presented paper we establish new properties of harmonic sense-preserving functions, connected with the regularity theorems. The effects both common for analytic and harmonic case and specific for harmonic functions are displayed.
Keywords: regularity theorem, linearly invariant family, harmonic function.
@article{PA_2015_4_1_a2,
     author = {E. G. Ganenkova and V. V. Starkov},
     title = {On regularity theorems for linearly invariant families of harmonic functions},
     journal = {Problemy analiza},
     pages = {38--56},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
AU  - V. V. Starkov
TI  - On regularity theorems for linearly invariant families of harmonic functions
JO  - Problemy analiza
PY  - 2015
SP  - 38
EP  - 56
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/
LA  - en
ID  - PA_2015_4_1_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%A V. V. Starkov
%T On regularity theorems for linearly invariant families of harmonic functions
%J Problemy analiza
%D 2015
%P 38-56
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/
%G en
%F PA_2015_4_1_a2
E. G. Ganenkova; V. V. Starkov. On regularity theorems for linearly invariant families of harmonic functions. Problemy analiza, Tome 4 (2015) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/