On regularity theorems for linearly invariant families of harmonic functions
Problemy analiza, Tome 4 (2015) no. 1, pp. 38-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical theorem of growth regularity in the class $S$ of analytic and univalent in the unit disc $\Delta$ functions $f$ describes the growth character of different functionals of $f\in S$ and $z\in \Delta$ as $z$ tends to $\partial\Delta.$ Earlier the authors proved the theorems of growth and decrease regularity for harmonic and sense-preserving in $\Delta$ functions which generalized the classical result for the class $S.$ In the presented paper we establish new properties of harmonic sense-preserving functions, connected with the regularity theorems. The effects both common for analytic and harmonic case and specific for harmonic functions are displayed.
Keywords: regularity theorem, linearly invariant family, harmonic function.
@article{PA_2015_4_1_a2,
     author = {E. G. Ganenkova and V. V. Starkov},
     title = {On regularity theorems for linearly invariant families of harmonic functions},
     journal = {Problemy analiza},
     pages = {38--56},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/}
}
TY  - JOUR
AU  - E. G. Ganenkova
AU  - V. V. Starkov
TI  - On regularity theorems for linearly invariant families of harmonic functions
JO  - Problemy analiza
PY  - 2015
SP  - 38
EP  - 56
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/
LA  - en
ID  - PA_2015_4_1_a2
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%A V. V. Starkov
%T On regularity theorems for linearly invariant families of harmonic functions
%J Problemy analiza
%D 2015
%P 38-56
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/
%G en
%F PA_2015_4_1_a2
E. G. Ganenkova; V. V. Starkov. On regularity theorems for linearly invariant families of harmonic functions. Problemy analiza, Tome 4 (2015) no. 1, pp. 38-56. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a2/

[1] Hayman W. K., “Some applications of the transfinite diameter to the theory of functions”, J. Anal. Math., 1951, no. 1, 155–179 | DOI | MR | Zbl

[2] Krzyż J., “On the maximum modulus of univalent function”, Bull. Pol. Acad. Sci. Math., CI:3 (1955), 203–206 | MR

[3] Bieberbach L., Einführung in die konforme Abbildung, Sammlung Göschen, 768/786a, 1967 | MR

[4] Hayman W. K., Multivalent functions, Cambridge University Press, 1994 | MR | Zbl

[5] Pommerenke Ch., “Linear-invariante Familien analytischer Funktionen, I”, Math. Ann., 155 (1964), 108–154 | DOI | MR | Zbl

[6] Campbell D. M., “Applications and proofs of a uniqueness theorems for linear invariant families of finite order”, Rocky Mountain J. Math., 4:4 (1974), 621–634 | DOI | MR | Zbl

[7] Starkov V. V., “Regularity theorems for universal linearly invariant families of functions”, Serdica Math. J., 11:3 (1985), 299–318 (in Russian) | MR | Zbl

[8] Schaubroeck L. E., “Subordination of planar harmonic functions”, Complex Variables, 41:2 (2000), 163–178 | DOI | MR | Zbl

[9] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc. (2), 42:2 (1990), 237–248 | DOI | MR | Zbl

[10] Sobczak-Kneć M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, LXV (2012), 191–202 | DOI | MR

[11] Ganenkova E. G., Starkov V. V., “Regularity theorems for harmonic functions”, J. Appl. Anal., 21:1 (2014), 25–36 | DOI | MR

[12] Graf S. Yu., “Regularity theorems for Jacobian in linearly and affine invariant families of harmonic mappings”, Application of the functional analysis in the approximation theory, 2014, 10–21 (in Russian)

[13] Ganenkova E. G., “A theorem of decrease regularity in linearly invariant families of functions”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 13 (2006), 46–59 (in Russian) | MR

[14] Ganenkova E. G., “A theorem on the regularity of decrease in linearly invariant families of functions”, Russian Mathematics (Izvestiya VUZ. Matematika), 51:2 (2007), 71–74 | DOI | MR | Zbl

[15] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl

[16] Duren P., Harmonic mappings in the plane, Cambridge university press, 2004 | MR | Zbl

[17] Godula J., Starkov V. V., “Linear invariant families”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 5 (1998), 3–96 (in Russian) | MR