On the generalized convexity and concavity
Problemy analiza, Tome 4 (2015) no. 1, pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f:\mathbb{R}_+\to \mathbb{R}_+$ is $(m_1,m_2)$-convex (concave) if $f(m_1(x,y))\leq\thinspace(\geq)\thinspace m_2(f(x),f(y))$ for all $x,y\in \mathbb{R}_+=(0,\infty)$ and $m_1$ and $m_2$ are two mean functions. Anderson et al. [1] studies the dependence of $(m_1,m_2)$-convexity (concavity) on $m_1$ and $m_2$ and gave the sufficient conditions of $(m_1,m_2)$-convexity and concavity of a function defined by Maclaurin series. In this paper, we make a contribution to the topic and study the $(m_1,m_2)$-convexity and concavity of a function where $m_1$ and $m_2$ are identric and Alzer mean. As well, we prove a conjecture posed by Bruce Ebanks in [2].
Keywords: logarithmic mean, identric mean, power mean, Alzer mean, convexity and concavity property, Ebanks' conjecture.
@article{PA_2015_4_1_a0,
     author = {B. A. Bhayo and L. Yin},
     title = {On the generalized convexity and concavity},
     journal = {Problemy analiza},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/}
}
TY  - JOUR
AU  - B. A. Bhayo
AU  - L. Yin
TI  - On the generalized convexity and concavity
JO  - Problemy analiza
PY  - 2015
SP  - 3
EP  - 10
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/
LA  - en
ID  - PA_2015_4_1_a0
ER  - 
%0 Journal Article
%A B. A. Bhayo
%A L. Yin
%T On the generalized convexity and concavity
%J Problemy analiza
%D 2015
%P 3-10
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/
%G en
%F PA_2015_4_1_a0
B. A. Bhayo; L. Yin. On the generalized convexity and concavity. Problemy analiza, Tome 4 (2015) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/

[1] Anderson G. D., Vamanamurthy M. K., Vuorinen M., “Generalized convexity and inequalities”, J. Math. Anal. Appl., 335 (2007), 1294–1308 | DOI | MR | Zbl

[2] Ebanks B., “Looking for a few good mean”, Amer. Math. Monthly, 119:8 (2012), 658–669 | DOI | MR | Zbl

[3] Alzer H., “Two inequalities for means”, C. R. Math. Rep. Acad. Sci. Canada, 9 (1987), 11–16 | MR | Zbl

[4] Alzer H., Qiu S. L., “Inequalities for means in two variables”, Arch. Math., 80 (2003), 201–205 | DOI | MR

[5] Carlson B. C., “The logarithmic mean”, Amer. Math. Monthly, 79 (1972), 615–618 | DOI | MR | Zbl

[6] Mitrinović D. S., Analytic Inequalities, Springer, New York, USA, 1970 | MR | Zbl

[7] Sándor J., “On the identric and logarithmic means”, Aequat. Math., 40 (1990), 261–270 | DOI | MR | Zbl

[8] Aumann G., “Konvexe Funktionen und Induktion bei Ungleichungen zwischen Mittelverten”, Bayer. Akad. Wiss. Math.-Natur. Kl. Abh., Math. Ann., 109 (1933), 405–413

[9] Anderson G. D., Vuorinen M., Zhang X., Topics in special functions III, arXiv: 1209.1696 | MR

[10] Bhayo B. A., Yin L., “Logarithmic mean inequality for generalized trigonometric and hyperbolic functions”, Acta Univ. Sapientiae, Mathematica, 6:2 (2014), 135–145 | MR | Zbl

[11] Baricz Á., “Geometrically concave univariate distributions”, J. Math. Anal. Appl., 363:1 (2010), 182–196 | DOI | MR | Zbl

[12] Qi F., Huang Z., “Inequalities of the complete elliptic integrals”, Tamkang J. Math., 29:3 (1998), 165–169 | MR | Zbl

[13] Kuang J. C., Applied inequalities, Second edition, Shan Dong Science and Technology Press, Jinan, 2002 | MR

[14] Abramowitz M., Stegun I. (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Dover, New York, 1965 | MR