On the generalized convexity and concavity
Problemy analiza, Tome 4 (2015) no. 1, pp. 3-10

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f:\mathbb{R}_+\to \mathbb{R}_+$ is $(m_1,m_2)$-convex (concave) if $f(m_1(x,y))\leq\thinspace(\geq)\thinspace m_2(f(x),f(y))$ for all $x,y\in \mathbb{R}_+=(0,\infty)$ and $m_1$ and $m_2$ are two mean functions. Anderson et al. [1] studies the dependence of $(m_1,m_2)$-convexity (concavity) on $m_1$ and $m_2$ and gave the sufficient conditions of $(m_1,m_2)$-convexity and concavity of a function defined by Maclaurin series. In this paper, we make a contribution to the topic and study the $(m_1,m_2)$-convexity and concavity of a function where $m_1$ and $m_2$ are identric and Alzer mean. As well, we prove a conjecture posed by Bruce Ebanks in [2].
Keywords: logarithmic mean, identric mean, power mean, Alzer mean, convexity and concavity property, Ebanks' conjecture.
@article{PA_2015_4_1_a0,
     author = {B. A. Bhayo and L. Yin},
     title = {On the generalized convexity and concavity},
     journal = {Problemy analiza},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/}
}
TY  - JOUR
AU  - B. A. Bhayo
AU  - L. Yin
TI  - On the generalized convexity and concavity
JO  - Problemy analiza
PY  - 2015
SP  - 3
EP  - 10
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/
LA  - en
ID  - PA_2015_4_1_a0
ER  - 
%0 Journal Article
%A B. A. Bhayo
%A L. Yin
%T On the generalized convexity and concavity
%J Problemy analiza
%D 2015
%P 3-10
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/
%G en
%F PA_2015_4_1_a0
B. A. Bhayo; L. Yin. On the generalized convexity and concavity. Problemy analiza, Tome 4 (2015) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/PA_2015_4_1_a0/